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1. Abstract and Objectives

Introducing centrality measures, a way to rank nodes, plus how and why to construct a convex
combination of them. We mainly put our focus on convex combinations of two centrality
measures. We introduce some well-known centrality measures and discuss what aspects they
individually emphasise to rank nodes of a graph. We will see that different centrality measures
provide a variety of valuable insights into node importance, and forming a combination of multiple
centrality measures is necessary to capture a graph's whole structure. Objectives To determine a
t,, such that

it maximise the correlation value between ¢; and ¢; , and between c; and ¢;,

it induces the most number of ranks (regular points)

ct, mimics both ¢y and ¢; better than ¢ and ¢; do to each other

(min{m(co, ct,), (e, 1)} > To(co, c1))

Definition 1: Centrality measures|
A centrality measure of a graph G is a function ¢ : V +— [0, 00) with the following properties:

2. Well-known Centralities

Degree centrality

Katz centrality
PageRank centrality

. Betweenness centrality
Closeness centrality ) )

i . Eigenvector centrality
Harmonic centrality

Example: Different centrality measures give different rankings

Rank Degree Closeness |Harmonic| Betweenness |Eigenvector| Katz |PageRank
1 V2, Vg, Ug U Vs U Vo Vs U
2 V3, Us V3, Vs, Ug vs vs vy vy vy
3 vy, v4, U7, V9, V1o v7 V2, U3, U V3, Us V3, U5 g U6
4 - vy V7 vy Vg V3, Vs | V3,05
5 V1, Vg U1, Uy |1, Vg, U7, Vg, V10 U7 U7 Vg, V10
6 Vg, V10 Vg, V1 = vy, U4 V1, Uy v7
7 - - - - Vg, V10 Vg, V1g| V1, Vg

Table 1. Ranks of nodes of Figure 1 by degree, closeness, harmonic,

Figure 1. A custom drawn graph betweenness, eigenvector, Katz and PageRank centrality.

Different centrality measures yield significantly different rankings of nodes, for this reason, a single
centrality measure may not be enough to capture the whole network structure and the importance
of nodes. Therefore, it is crucial to take into account the view of multiple centrality measures
simultaneously, by taking the combination of them when ranking nodes. [2]

3. Convex Combinations of Centrality Measures

Given centrality measures ¢y and ¢; and a real number ¢, we define the functions tcy and ¢y + ¢; by
setting

(teo)(v) = tep(v) and (co + ¢1)(v) = co(v) + c1(v)
forallveV.

| Definition 2: Convex combinations of centrality measures|

Given centrality measures cy,cy, ...,c, and non-negative real numbers ty,ti,....t, such that
St ti =1, we define the convex combination c¢; as follows:

n
Ct:t060+t161+...+t”0n2Ztici. (1)
i=0

< Theorem 3:

Let ¢y, ¢y, ..., ¢, be centrality measures. For any (g, 1y, ...,t,) € A", the convex combination ¢; is

a centrality measure. [1]

Each score of node assigned by individual ¢; contributes some weightage to ¢;, which is determined
by the value ¢;. One way to determine the value of each ¢; is by making sure ¢; truly represents all
individual ¢;'s, that is, the correlation between ¢; and each individual ¢;'s are as large as possible.

4. Correlation Methods

- Definition 4: Kendall’s tau-b]

Given normalized centrality measures ¢y and c;, the Kendall’s tau-b of the two ranks induced by
¢o and ¢y on a graph G on n vertices is

mo — Mp

e = e m =Ty’

()
n(n—1)

where m = #pairs of distinct nodes in G = ( 5—, M = #concordant pairs in G with respect to
¢y and ¢1, mp = #discordant pairs in G with respect to ¢, and ¢, Ty = #pairs of distinct nodes
in G tied on ¢y, T\ = #pairs of distinct nodes in G tied on c;.

- Definition 5: Pearson’s r]
Given normalized centrality measures ¢y and ¢y, the Pearson’s r between the two ranks induced by
¢y and ¢, on a graph G on n vertices is

n(3in colvi)er(vi) — (i co(v)) (i ea(wi)
VIn i (co(vi))? = (27 co(w))Aln iy (er(0)? = (i en(vi))T

(3)

r(co, 1) =

7. Conclusion

In conclusion, we see different centralities emphasise different aspects. To construct a convex
combination, we need it to represent all ¢;'s, where we used correlation methods. Finally, we
demonstrated how to use Kendall's tau-b and Pearson’s r to find the optimal ¢ for ¢;.
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5. Convex Combinations of Two Centrality Measures

A convex combination of two centrality measures, ¢; = (1 — t)cy + tci1, ¢, ¢1 spanned by
Al = {(1 - t7t> € |t € [07 1]}

< Lemma 6:

If any pair of distinct nodes of G are concordant with respect to or tied on both ¢y and c;, then
¢t will preserve this property for all t € [0,1]. [1]

< Lemma 7:

Any pair of distinct nodes of G are either tied on c;+ for at most one t* € [0, 1] or tied on ¢; for
allt €0,1]. [1]

| Definition 8: Regular points|
A point t* € [0,1] is a critical point if there exist distinct nodes u and v of G that are ranked
equally by ¢+ but w and v are either not tied on ¢, nor on c;. [1]

| Definition 9: Critical points|
A point t* € [0,1] is a critical point if there exist distinct nodes u and v of G that are ranked
equally by ¢ but uw and v are either not tied on ¢ nor on ¢;. [1]

< Lemma 10:

For any pair of distinct nodes of G that is neither concordant wrt nor tied on both ¢, and ¢y, there
exists a unique critical point t* € [0,1]. Furthermore, for any r,s € [0, 1], the pair of nodes are
concordant with respect to ¢, and ¢ if and only if either r,s € [0,t*) orr,s € (t*,1]. [1]

Lemma 11: |

The ranking of nodes of a graph G induced by c:, as t varies in [0, 1], changes only finitely many
times and the number of times the ranking changes is

2T = [T7 N {0, 1}, (4)
where T* is the set of critical points t* € [0, 1] and |T*| is the cardinality of the set T*. [1]

A Lemma 12: |

For a regular point t, the ranking of nodes of a graph G induced by c; is insensitive to sufficiently
small variation in t. Particularly, for any two consecutive critical points t; and t;, where t7 < t,
the ranking induced by ¢, stays the same as t varies in t € (t,¢5) N [0,1]. [1]

177]

6. Optimizing Convex Combinations of Two Centrality Measures

Theorem 13: |

Using Kendall's tau-b, there is always a t, € [0, 1] such that t, is a regular point and ¢;, mimics
both ¢y and ¢, better than ¢ and ¢, do to each other. [I]

Via minimizing the objective function g(t; ¢y, c1) = (1 — m(co, cr))? + (1 — T(e1, ¢1))?
By Lemma 11, each 7,(cy, ¢t) and 7(cy, ¢¢) changes its values finitely many times as ¢ varies in
[0,1]. By Lemma 6 and 10, changes in values occur only when it passes through a critical point.
Therefore together with the Theorem 13, it is feasible to determine t;, and hence compute the
optimum ¢;, by minimizing the objective function g(t; ¢y, ¢1) with regular points.

Theorem 14: |

Using Pearson’s r, there is always a t, € [0, 1] such that ¢;, mimics both ¢, and ¢, better than ¢
and c¢; do to each other.

Via minimizing the objective function h(t; ¢y, c1) = (1 — r(co, c))? + (1 — r(c1, ¢r))?
With similar sayings as before, by Lemma 6, 10, 11 and Theorem 14, it is feasible to determine
t, and hence compute the optimum ¢;, by minimizing the objective function h(t; ¢y, ¢1).

Example: ¢, and ¢, splits ranks of nodes better

Rank| ¢ (Closeness)|c; (Betweenness)| ¢, ¢,
1 Vg Vg U Vg
2 V3, U5, Ug U3 Vs s
3 vy U3, Vs V3, U5 | U3, U5
H 4 U2 ) () U2
: 5 V1, Uy V1, Uy, U7, Vg, V1o | VU7 vy
6 Vg, V10 = V1, V4 | U1, V4
7 - - Uy, V10 | V9, V10

Figure 2. g(t; co, ¢1) for Figure 3. h(t; ¢y, ¢;) for

) Table 2. Ranking of nodes by ¢y, ¢1, ¢, ¢, on
Figure 1 Figure 1

Figure 1
When ¢y, ¢; = closeness, betweenness centrality,
m g(¢; ¢y, ¢1) minimized at ¢, ~ 0.1959, h(t; cg, ¢;) minimized at ¢, &~ 0.3013
m ¢, = 0.8041co + 0.1959¢;, ¢, = 0.6987cy + 0.3013¢y
m min{7n(c, ¢;,) = 0.9271, 7(c1, ¢,) =~ 0.8997} > 73(co, ¢1) ~ 0.8315,
min{r(cy, ¢,) = 0.9795,7(c1, ¢,) = 0.9795} > 7(co, ¢1) &~ 0.9188
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Abstract

This study analvzes the unsteady magnetohydrodynamic (MHD)
boundary layer flow and heat transfer of a (luid over a stretching
sheet in the presence ol viscous dissipation and heat source. By
using the similanty transformation, the poverning non-linear partial
differential equations are transformed nto a solvable form, which i3
ordinary differential equations, before being solved numerically by
a collocation method using the bvpde [unction in MATLAB
soltware. The influence of physical parameters such as the local
Nusselt number and skin friction coeflicient on the developed model
is presented and discussed. The impacts of various physical
parameters  on  the dimensionless  temperature  profiles  are
graphically 1llustrated and analyzed. The graph should be
asvmplotic to the x-axis as the similarity variable increases. From
the result, we could see that as the magnetic parameter M increases,
the skin [riction coeflicient, increases while the Nusselt number
decreases.

Research Objectives

« To construct a mathematical model which describes the unsteady
two-dimensional laminar boundary layer flow past a continuously
stretching  sheet  immersed in an  incompressible  electrically
conducting field.

« To solve the mathematical model by using the collocation method
(bvpde function) available in MATLAB software.

« To analyze the transport phenomena m the [Tuid regime when the

governing parameler varies in terms of the physical quantities.

Literature Review

I.Boundary layer flow over a stretching sheet

+ Sakiadis (1961} analyzed boundary layver low on a continuously
stretching surlace al a constant speed.

« Chen and Char (1988) analvzed laminar boundary laver [low and
heat transfer on a streiching sheet with various thermal
conditions.

2. Magnetohydrodynamics (MHD)

« In 19405, geophysicists theorized that Earth’s magnetic field was
generated by the dynamo action in its liquid-metal core, an dea
first proposed in 1919 by Larmor for the Sun.

« In the 1930s, plasma physicists became interested in MHD for
controlled thermonuclear fusion, locusing on the stability of

magnetically confined plasmas.

3. Unsteady Flow

« Stokes has laid the foundaton for the Navier-Stokes equations,
which describe the motion of viscous Tuids and are fundamental
Lo the analysis of unsteady Mows.

» Ludwig Prandtl developed the concept of the boundary layer and
made sigmficant advances m the understanding ol unsteady Mow
phenomena. particularly in the context of acrodynamics.

« Unsteady Mow s characterized by flow parameters at any point
that vary with time.

4. Viscous Dissipation

« Morini (2013) stated that the irreversible process by means of
which the work done by a fluid on adjacent layers due to the
action of shear forces is transformed into heat is defined as viscous
dissipation.

« Stokes (1831) studied the motion of spheres through a viscous
fluid, leading to the formulation of Stokes' law, which describes
the drag force experienced by a sphere moving through a viscous
Muid.

5. Heat Source/Sink
« In the context ol heat transfer, a heal source adds thermal energy
Lo a system, increasing its lemperature, while a heat sink removes
thermal energy, decreasing the temperature.
« According to West (2014), Joseph Black was a pioneer in careful
measurements of heat transfer in 1761 who noticed that the
change of slale can occur over a prolonged period when a

J

substance is heated or cooled withoul a change in temperature.

Methodology

This section explams how viscous dissipation and heat sources
affect unsteady MHD flow over a stretching sheet. It derives the
governing equations which are continuity equation, momenium
equation and energy equation and uses similarity transformation Lo
turn them mto ordinary differential equations. The chapter also
discusses using the bvpde function in MATLAB to compule
numerical solutions, which helps understand how the poverning

Mathematical Model Schematic Diagram

=
1=Ky +Pr| fF — Fd|-Pra|d+ ‘ |+ el Eof =+ ]

with the boundary conditions,
Fi)=0. 1 (0= LE(D) = 1at y=0.

Figure 1.2: Velocity bomndary layer developmeni on a flag plaie Figure 1.3: Thermal boundary bryer devels 1 on an isorkerssad Mac plae
LY = WO s O s gy s 0

parameters change.

Figure 1
Temrperatung profibes kv ditfanens welues of Ec

An increment in Ee mfers that the viscous dissipation in the boundary laver becomes more significant.  Viscous dissipation relers 1o the
conversion of mechanical energy into thermal energy due to the internal friction within the Tuid. Thus, the Muid temperature increases as ¢
increases [rom 0.1 to 3.

From the table, we can observe that when parameters are fixed at M =2 4 =7, R = 1, y = |, as Ev¢ increase, the local Nusselt number
decreases as stated by Reddy et al. (2015).

Figara 2
Temperature profins for dMerant vaiuas of -

The heat source parameler represents the strength of the internal heal generation or absorption within the boundary layer. As the heat source
parameter increases, the internal heat generation within the boundary layer also increases. Thus, the Tuid temperature increases as p increases
from 0.1 to 0.4

Lt is observed thal as the heat source parameter y increases, the local Nusselt number decreases as proved by Reddy et al. (20135).

The decreased temperature gradient between the stretching sheet and the fluid, caused by the increased fuid temperature, leads o a reduction
in the convective heat transfer from the stretching sheet to the MNuid.

Figue 3.
Tampataiune prefies for e rant valuas of

The magnetic parameter represents the strength of the applied magnetic field perpendicular 1o the flow direction. As the magnetic parameter
increases. the Lorentz force acting on the electrically conductive Tuid within the boundary layer also increases. The decreased Muid velocity
within the boundary layer due to the increased Lorentz force leads 1o a reduction in the convective heat transfer from the stretching sheet o
the Muid. Thus, when M increases the fluid temperature increase.

The Lorentz force introduced by the increased magnetic parameter acts to oppose the fluid motion within the boundary layer. This affect the
wall shear stress 1o rise and results in an increase of -/{0).

The decreased fuid velocity within the boundary layer due to the increased Lorentz force leads to a reduction in the convective heat transler
from the stretching sheet to the Muid. This affect the Mud temperature to rise and results in the decrease of -80).

Tamparaiun profas for SManant valias of 7.

The radiation parameter represents the contribution of thermal radiation to the overall heat transfer in the boundary layer. The fluid within the
boundary layer absorbs the incoming radiative heat, leading to an increase in the internal energy of the fluid. This additional heat absorbed by
the fuid through radiative heat transler causes the Muid temperature o rise. Thus, the fluid temperature increases as R increases from 1 to 4.

We could see that as the radiation parameter R increases, the local Nusselt number decreases, as stated by Reddy et al. (20135).

Conclusion

Temperature profiles decrease with an increase in the magnetic parameter, M.

Temperature distribution increases as the radiation parameter, Eckert number, and the heat source parameler increase.

The magnitude of the skin friction coelficient increases with an mcrease in magnetic parameter whereas the magnitude of the Nusselt number
decreases.

The heat transfer rate at the surface decreases with an merease in the radiation parameter, magnetic parameter. Eckert number and heat source
parameter.

The contribution of the present work has rectified the mistake which has been made by Reddy et al. (2015).
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ASSESSMENTS OF MACHINE

REGRESSION MODELS FOR PREDICTING

THE DEVELOPMENT OF THE

SYNDROMIC CRANIOSYNOSTOSIS

HaoRan Xin S2106630

Introduction

Syndromic Craniosynostosis is a congenital condition in which the sutures of the skull fuse prematurely, resulting in abnormal
head and face shape. In order to develop a targeted personalized treatment plan, the prediction of facial growth patterns is
particularly important. By examining the accuracy of a specific regression model for the face measurement, it provides the basis
for personalized and precise treatment programs.This study aimed to determine the effectiveness of three regression models-
least square linear regression, support vector machine (SVM) regression, and random forest-in predicting the middle facial area of
Syndromic Craniosynostosis. Identify the most reliable models for high-precision prediction in clinical applications.

Analysis Methodology

Least Squares Linear Regression

Least squares linear regression minimizes the sum of squared errors to fit a line through the data, simplifying the analysis when
the variables have an almost linear relationship.

Support Vector Machine Regression

SVM regression uses kernel functions to map input features to higher dimensional Spaces, thus achieving linear separation and
suitable for handling complex interactions

Random Forest

The random forest builds multiple decision trees and averages their predictions to reduce errors and improve confidence. Its
efficient handling of nonlinear relationships and complex interactions makes it suitable for predicting high-precision midplane
measurements.

Random Forest Results

Variable Mean Squared Error (MSE) R-squared (R?)
ZMs-ZMsR 6.698 0.877
N-ANS 6.042 0.992
ANS-PNS 10.123 0.836
ZF-ZFR 18.989 0.904
ZMs-ZTi 13.462 0.934

The outcome of Random Forest Regression indicates the sufficiently good seemingly in each
dependent variable, with the range of R-squared (R?) values fluctuation from 0.836 to 0.992.
The N-ANS factor is depicted as bearing a value of 0.992 at R?

, Which could mean that the
model explains 0.992. And the N-ANS variable MSE also comes out low in correlation

Actual vs Predicted: ZMs_ZMsR (Random Forest) Residuals: ZMs_ZMsR (Random Forest)
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Random Forest Actual vs Predicted Values for ZMs_ZMsR et (e e Pl A A R
Most of the residials are between -0.5 and 1.5,
showing that the random forest model's
predictions of the "ZMs_ZMsR" variable are
very accurate with very little error.

While there are some positive and negative
residuals near the predicted values of 40, 48,
and 54, the values are very small, showing that
the model's prediction error in these intervals
is also small.The random forest model performs well in
predicting the "ZMs_ZMsR" variable, with small
residual values, relatively random error
distribution, and no obvious systematic bias.

In the least square linear regression model, ZMs-
ZMsR is chosen as the best predictor. In order to
compare the performance of different models on
the same variable, we also use the ZMs-ZMsR
variable for analysis in the random forest
model.Although not as good as N-ANS, it still has
higher explanatory power and lower prediction
error.The random forest model shows high prediction
accuracy when predicting the variable "ZMs_ZMsR".Most of the
data points are close to the ideal 1:1 relationship line, indicating
that the random forest model can fit the data well and provide
accurate predictions.

Summary and Conclusion

Least square linear
regression

Support vector machine
regression (SVM)

Random forest regression

It performed well in predicting the "ZMs-ZMsR"
variable, with MSE of 6.698 and R? of 0.877,
showing good predictive performance and

explanatory power.

The prediction of extreme values is stable and

the residual is small.

It also performs well on other variables and is

suitable for data with complex and non-linear
relationships.

It performed well in predicting the
"ZMs-ZMsR" variable with an MSE of
6.484 and an R? of 0.906, showing
trong explanatory power and a small
prediction error.

However, it does not perform well on
extreme values, and the residual is
large.

It performed poorly in predicting the
"ZMs-ZMsR" variable, with MSE of 56.512
and R2 of only 0.178, showing large
prediction error and weak explanatory
power.

It performs poorly on all variables and
may require further tuning and
optimization.

The prediction of extreme value by Random forest is stable and the
residual is small. It also performed well on other variables. And Random
forest model hasn obvious advantages in dealing with data complexity and
multicollinearity, and is the best predictive model among the three
models. Its the best choice for predicting facial development in patients
with Syndromic Craniosynostosis

LEARNING

MIDFACE IN

UNIVERSITY MALAYA

Least Squares Linear Regression Results

Variable Mean Squared Error (MSE) R-squared (R?)
ZMs-ZMsR 6.484 0.906
N-ANS 12.840 0.888
ANS-PNS 8.815 0.860
ZF-ZFR 20.022 0.870
ZMs-ZTi 13.115 0.835

ZMs-ZMsR and ANS-PNS are the most suitable predictors because they have high Rz values and relatively low MSE values, indicating that

the model has strong explanatory power for these variables and small prediction errors.

ZMs-ZMsR Function:
ZMs-ZMsR=0.42(S-N)—1.62(N-SO)-0.46(SO-BA)—0.15(N-S-BA)+0.05(S-SO-BA)—21.38
ANS-PNS Function:
ANS-PNS=0.12(S-N)+1.74(N-SO)+0.91(SO-BA)+1.15(N-S-BA)+1.24(S-SO-BA)+45.01
ZF-ZFR Function:
ZF-ZFR=0.15(S-N)—-0.42(N-SO)—-0.22(SO-BA)+0.19(N-S-BA)+0.24(S-SO-BA)-0.54
ZMs-ZTi Function:
ZMs-ZTi=0.05(S-N)—0.13(N-SO)—0.04(SO-BA)—0.06(N-S-BA)+0.01(S-SO-BA)—48.03

These formulas are derived by linear regression model, they describe the linear influence of different independent variables
on the target variable, and can be used to predict the corresponding target variable value.

Actual vs Predicted: ZMs_ZMsR Residuals: ZMs_ZMsR
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LEAST SQUARES LINEAR REGRESSION ACTUAL VS
PREDICTED VALUES FOR ZMS_ZMSR

LEAST SQUARES LINEAR REGRESSION RESIDUALS
FOR ZMS_ZMSR

At the point where the X-axis is close to 40, the
predicted value is significantly lower than the actual
value, and the positive residual is larger in the
corresponding residual plot.

For points where the X-axis is close to 60, the predicted
value is significantly higher than the actual value, and
the negative residual is larger in the corresponding
residual plot.The residual error in the middle region is
small,indicating that the model is more accurate in this
interval.

The residual distribution is relatively random,
and there is no obvious systematic bias,
indicating that the error of the model is
random in most of the predicted values.

Large residuals appear at the extremes of the

predicted values (near 45 and 60), suggesting

that the model has a large error problem in
these intervals.

Support Vector Machine (SVM)regression Result

Variable Mean Squared Error (MSE) R-squared (R?)
IMs-ZMsR 56.512 0.178
N-ANS 92.9762 0.191
ANS-PNS 45.671 0.274
ZF-ZFR 130.316 0.150
ZMs-ZTi 66.714 0.160

The mean square error (MSE) values of all variables are relatively high, which indicates that the SYM model
has a large prediction error on these variables.
All variables had low r-squared (R?) values, indicating that the SVM model had limited ability to explain these
variables.
These conditions indicate that the model cannot effectively predict these mid-face measurement
parameters in the current

Future Research Directions

1. For future research, the parameters of the random forest model can be further optimized and
more relevant variables can be included to further improve the prediction accuracy.

2. Removing features with high VIF values or dimensionality reduction through principal
component analysis (PCA) can reduce the influence of multicollinearity on the model and improve
the stability and prediction accuracy of the model.

3. Use regularization methods such as Ridge regression and Lasso regression to introduce penalty
terms and reduce multicollinearity effects

4. Hyperparameter adjustment of SVM , such as adjusting regularization parameters, can
significantly improve the model's prediction performance.

5. Data expansion: Expand and enrich the data set by collecting more patient data, especially
patient data of different age groups and different disease severity.
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Introduction 113m 3381 2079 4213 14715 875 4965 1421 15000 7956 3460  The dataset for this study

9y 6m 44.65 47.35 50.59 128.24  67.50 59.74 18.07 14526 91.94 44.70

: : . T : syllm 3850 3646 4616 13948 7021 5921 1457 4547 297 4410 consisted of 24 patients, each
Syndromic craniosynostosis is a group of rare genetic disorders characterized s 1o, 1335 1617 4358 13471 6432 5511 21.09 15320 8658  44.03

by the premature fusion of one or more of the cranial sutures, the joints amo a9 %636 503 e sz 77 leos e w4 ey fePresenting apatient diagnosea

) ] ly 34.03 28.77 40.79 137.81 57.91 4923 13.67 160.10  78.54 36.59 W|thS dromiC CrOniOS nOStOSiS.
between the bones of the skull. This premature fusion can lead to an 175y 3537 3197 4048 14119 6098 5006 1434 16336 77.17 3748 y y

. . . o 3y3m 3691 3406 4759 13761 6154 5437 1648  137.04 8311 3794 The responsevoriablesinclude
abnormal head shape and, in some cases, associated physical and cognitive 46m 3092 2893 3566 14976 5124 4193 1300 15628 73.66  32.54

, , , , , : , 3y8m 3883 3969 4922 14405 6846 5799 1764 14636 8747 4547 ZMs-ZMsR’, 'N-ANS’, ’ANS-PNS’,
impairments.Treatment for syndromic craniosynostosis typically involves a ty10m 4066 4167 4931 14074 7010 5829  17.61 16575 89.82  44.70

NENT L : , By2m 4446 4802 552 14197 7199 6009 2024 13480 10131 szos  ZF-ZFR’,’ZMs-ZTi’, likely derived
multidisciplinary approach, with input from neurosurgeons, craniofacial sru: ! 3288 2885 3808 14128 5527 4582 1295 15339 7280 3331 /

. . . . , from anatomical or physiological
surgeons, geneticists, and other specialists. The primary goal is to allow for ~ [»!m 5 936 858 1922 7160 6241 224 1908 5% 0 PRy J

. . . 2y 5m 36.66 34.97 44 .47 135.25 65.42 56.13 14.46 150.39 80.59 35.86 meqsurements used for
normal brain growth and development by surgically correcting the abnormal  108m 3332 2037 3862 14116 5439 4497 1260 15275 7Ll 3229 ,

L. ) ) . 17m 13d 35.00 32.19 37.20 138.85  57.92 47.85 13.08 153.13  75.13 35.76 stessin Conditions or
skull shape. Additional therapies may address other medical issues that 12y 3187 3055 4273 14512 5859 4944 1267 14720 7535 3501 J

: 9y4m 4261 4493  51.85 13480 7082 6230 2017  140.16 9240  46.43 anatomical relotionships.
arise. 10y3m 4333 4614 5592 14564 7426 5973  17.67 15732 10053 5279
8.3m 33.16 28.15 38.74 144 .95 55.75 46.79 13.96 153.75 7388 34.35
6y4m  41.63 4329 4633 13896 6399 5526 2068 14836 9163  51.14
15y 4m 47.13 5786 5670 13550 84.57  63.02  17.02  169.01 9892  50.07

i . Multicollinearity is a common problem in regression
Objective MethOdomgy- analysis where the predictors are highly correlated. It
The primary objective of this study is to Data Description was to detect a degree of multicollinearity which is
compare three regression models—Least Multicollinearity Check (VIF Test) the correlation between independent variables.
squares linear Regression, Ridge Regression, Normality Test (Shapiro-Wilk Test) We will perform the Shapiro-Wilk Test to check their
and Lasso regression—for predicting midface Analysis Methodology normality. This determines whether the variable is
region measurements based on cranial base (1) Least Squares Linear Regression suitable for linear regression analysis. The Shapiro-
parameters. (2) Ridge Regression Wilk test is used to test the residuals of each model

(3) Lasso Regression and to test the normality of the distribution, which is
the basic assumption of linear regression analysis

Results

Variable Mean Squared Error (MSE) R-squared (R?) Variable Mean Squared Error (MSE) R-squared (R?) Variable Mean Squared Error (MSE) R-squared (R?)

ZMs-ZMsR 6.48 0.91 | ZMs-ZMsR 5.81 0.80 | ZMs-ZMsR 1.95 0.93

N-ANS 12.84 0.89 | N-ANS 5.90 0.93 | N-ANS 2.76 0.97

ANS-PNS 8.82 0.86 | ANS-PNS 6.23 0.88 | ANS-PNS 9.08 0.83

LF-ZFR 20.02 0.87 | LF-ZFR 6.11 0.94 | LE-ZFR 3.90 0.96

LMs-ZTh 13.12 0.84 LMs-£Th 10.27 0.75 | ZMs-ZTh 4.33 0.89

Least Squares Linear Regression Ridge Regression Lasso Regression
The Mean Squared Error (MSE) for the predictions is The mean square error (MSE) value represents The Lasso Regression results show that each
approximately 6.78. the mean square error between the estimate and dependent variable is superficially good
MSE is a measure of the average squared difference the actual value. The greater the MSE value, the enough, and the R Squared value fluctuates
between the estimated values and the actual value. greater the prediction error. In this analysis, the from 0.836 t0 0.992. The N-ANS factor has a
The R-squared (R?) value is about 0.856. mean square error value ranges from 5.81 to value of 0.97 at R Squared, which probably
This value represents the proportion of the variance 10.27, and there is a significant difference in means that the model explains 97%. The
for the dependent variable that’s explained by the prediction accuracy between different variables. correlation of the ZMs-ZMsR variable is also
independent variables in the model. An R?value The R Squared value represents the proportion of low (R?=0.93). Although this value is reduced
closer to 1 indicates a model that explains a large the difference in the dependent variable that from the original 100%, the model still
portion of the variance. can be predicted by the independent variable. describes the proposed phenomenon fairly
The R Squared value is between 0.75 and 0.94. well.

Discussion Conclusion

The primary objective of this study was to compare the
performance of three regression models—Least Squares
Linear Regression, Ridge Regression, and Lasso Regression—in
predicting midface region measurements in patients with
syndromic craniosynostosis. Our analysis demonstrates that
the choice of regression model significantly impacts the
accuracy and reliability of predictions, with Lasso Regression
showing the most promising results. The lowest MSE and

We evaluated the Least Squares Linear Regression, Ridge
Regression and Lasso Regression, revealed large differences
in the predictive power of facial measurements in patients
with Sydromic Craniosynostosis. The Lasso Regression,
which has unique features for handling multicollinearity
problems and variable selection, has an R* of 0.97 for N-
ANS, suggesting that the model can explain 97% of the

}/or.ionoe. Under the leqst squor.es rr'wodel., VIF values ?Gn highest R-squared values obtained with Lasso Regression
indicate problems of high multicollinearity. Processing indicate its superior capability in predicting midface

multioo!lineority with Ridge Regressi.on.on.d.Losso | development in patients with syndromic craniosynostosis.
Regression can reduce the effect of insignificant predictors, This makes it an invaluable tool for clinicians involved in

thereby improving the reliability of the model. treatment planning and intervention strategies.
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Forecasting Ricketsiosis Case Numbers in Malaysia:
Analysis of Count Time Series Following Generalized Linear Model

What are Rickettsia and Rickettsiosis?

1o

= —— Y
Rickettsia are small, obligately intracellular Gram- "&/ g
negative bacilli. They are distributed among Ten ,6(?'{ ,
various hematophagous arthropod vectors and LY Vb 4V :
cause Rickettsioses, an acute undifferentiated y
febrile illness, and are often accompanied by

headache, myalgias, and malaise.
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Cases of Rickettsiosis in Malaysia
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Time Figure 2: Distribution of Rickettsiosis Cases in

Figure 1. Rickettsiosis Cases in Malaysia (May 2016 - Dec 2019)

As shown in Figure 1, we can see a clear trend of increasing Rickettsiosis cases over
the years from May 2016 to December 2019.

Additionally, Figure 2 shows the distribution of cases by state. From this pie chart, we
can see that a significant proportion of cases are concentrated in East Malaysia,
particularly in the states of Sabah and Sarawak.

Malaysia by State (May 2016 - December 2019)
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What is SARIMA Model?

« The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is an
extension of the ARIMA model that supports time series data with a seasonal component.
It combines autoregressive (AR), differencing (l), and moving average (MA) components to
capture both the seasonal and non-seasonal behavior of the time series.

+ Components of SARIMA:
The SARIMA model is represented as:
ARIMA (p, d, q) (P, D, Q) m

Lowercase letters Uppercase latters

(P, D, Q): These parameters represent the seasonal part of the model.
» P: Seasonal autoregressive order.
it captures the relationship between o volue and Its seasonal lags.
+ D: Seasonal differencing order.
It helps to remove seasonal trends in the data, making it easier to model,
*+ Q: Seasonal moving average order.
1t captures the relationship between a value and past forecast errors from
seasonal logs.

(p. d. q): These parameters represent the non-seasonal part of the model.

+ p: Non-seasonal autoregressive order.
It Indicates the number of lag observations Included In the maodel.

+ d: Non-seasonal differencing order.
It indicates the number of times the raw observations are differenced to make the
time serles stationary.

+ g: Non-seasonal moving average order.
It indicates the size of the moving average window used to smoath the time series.
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Monthly Rickettsiosis Case Numbers in

S o Malaysia
' o e + Study Area :
A i Includes 8 states in Malaysia
ol — sl ) » Time Period
o o May 2016 ~ December 2019
: ? 4 ‘: (Total of 44 observations)
i 1 o » Data Type:

S 8§ 2 Discrete Time Series

Seasonal Check o
The radar plot shows the monthly ,
distribution of cases from 2016 to 2019. - o
Seasonality Detection: The plot indicates S
a recurring peak in March across multiple 2018

years, suggesting the presence of
seasonal patterns in the data. Given the
observed seasonality, we could train a
SARIMA model to capture these seasonal
effects for more accurate forecasting.

Fit SARIMA Model

1.Split train and test set:
2. Model Selection

Month

Test Set: 2019 Jul ~ 2019 Dec

Train Set: 2016 May ~ 2019 Jun

Table 1. Information Criteria

To choose the best model, we used three |Model AIC AICc BIC
information criterias: AIC, AlCc¢, and

BIC. They are information criteria to |SARIMA(R,1,1)(e,1,1)[12] 159 169 162
measure the goodness of fit of a statistical -

model, Lower values mean that the model SARIMA(@,1,1)(@,0,1)[12] a8 220 224
fits better. SARIMA(1,1,0) (@,0,1)[12] 219 220 224

3.SARIMA Model

As shown in Table 1, our best model is
SARIMA(0,1,1)(0,1,1)[12], which has the
lowest AIC, AlC¢, and BIC scores,

(p, g, q)(F DO Q)In
Model: SARIMA(0,1,1)(0,1,1)[12]
* No autoregressive terms, so p = 0 and P =0,
* One differencing term (d = 1) and one seasonal differencing term (D = 1).
* One moving average term (q = 1) and one seasonal moving average term (Q = 1).

* A seasonal period of 12 months (m = 12).

By: WANG CAN S2037359
Residual Diagnostics (SARIMA)

Residual diagnosis from SARIMA (0, 1, 1) (0, 1, 1)

The ACF plot indicates that most residuals
fall within the confidence intervals,
suggesting no autocorrelation.

The histogram reveals that the residuals
are approximately normally distributed but
exhibit a slight skew and a few extreme
values, indicating the presence of outliers.
The residual diagnostics suggest that the
SARIMA(0,1,1)(0,1,1)[12] model provides a
reasonable fit to the data.

count

resid

Forecast Value Vs. Actual Value (SARIMA)

Forecasts from SARIMA (0, 1, 1) (0, 1, 1) model

b |
9 ) [ |/

—Actual Value: 2016 May ~ 2019 Dec

— Forecast Value: 2019 Jul ~ 2019 Dec

+ The SARIMA model provides forecasted
values generally follow the trend of the
octuol volues, indicating a reasonable
meodel fit.

+ Almost oll actual values fall within the
95% confidence interval, suggesting the

R f model's predictions are relioble.

J + Some divergence between forecasted
and actual volues indicates potential
areas for model refinement.

lavel

8 n
Month

80% Confidence Interval (Light Blue Shading)
95% Confidence Interval (Dark Blue Shading)
The shading areas show the confidence intervals,
Indicates the range within which the actual values are expected to fall with 80% and 95% probabilities.

Why would we want to develop a GLM?

The monthly cases of Rickettsiosis form a count time series with low counts, ranging from 2 to 27. As noted by
Stephan (2016), such series are not well-suited for methods designed for continuous distributions. Traditional
SARIMA methods, which assume a continuous sample space, are therefore inappropriate for this type of data.
Given the absence of a generalized approach, we decided to investigate a specific model for the data. Our
analysis focuses on the Generalized Linear Model (GLM), which is particularly effective for this purpose, and we
compared its performance against SARIMA models.

- « Generalized Linear Models (GLM):

is the most common model for analyzing count data

* Compared to the usual GLM, the innovative GLM we used from Tobias Liboschik
considers the empirical autocorrelation of the count time series data.

* It can be defined in the following form:

» 9
g0 =Bo+ Y Bia(¥ia) + 3 cuglhe- )+ 77TXt
k=1 =1

Capture short-term serial dependencies through
a first-order autoregressive term and annual
seasonality through a twelfth-order
autoregressive term, both specified in the model
parameter list element named ‘past_obs’.

Due to the more severe infections in East
Malaysia, we include the number of cases in East
Malaysia as a covariate. For distribution, we
chose the negative binomial. Due to our data
being discrete and not satisfying the Poisson
distribution assumption (variance equals mean).

Fit GLM Model

R > summary(fit)
Call:
tsglm(ts = train_timeseries, model = list(past_obs = ¢(1, 12)),

xreg = train_regressors, link = "log", distr = "nbinom")

Residual Diagnostics (GLM)

ACF of response residuals

o
" The ACF plot helps identify any correlations between
B residuals over different time lags. All autocorrelations lie
Q- within the 95% confidence bands (blue dashed lines),
L suggesting that the residuals do not exhibit significant
g autocorrelation. It shows that does not exhibit any

N autocorrelation or seasonality which has not been taken into
account by the model. This is a desirable property indicating a
good model fit.

Forecast Value Vs. Actual Value (SARIMA
The forecasts (red lines) have

—Actual Value: 2016 May ~ 2019 Dec
generally trended in line with the

—Forecast Value: 2019 Jul ~ 2019 Dec
Forecasts from GLM modal actuals and in most months the

TR forecasts have almost accurately
& - Forecasts predicted the number of cases,

e o e.g. September and October 2019.
g O But there are still months that

5 w _ deviate significantly from the

E actual values, which is common
5 2 - " because our prediction horizon,
“ R l.e. the test set, is too short. We

' can look forward to the predictive

performance of this model over

longer time periods.
Table 2. Forecast Accuracy Comparison of SARIMA and
GLM for Rickettsiosis Case Numbers .
Conclusion:

Model RMSE MAE MPE MAPE * From the table 2, The GLM
outperforms the SARIMA
model in all measures.

SARIMA | 4.945685 | 4.015738 -12.67336 ssssme |1 Drmmeadaion
* For forecasting Rickettsiosis
case numbers in Malaysia,
the GLM is preferred due to
GLM 4.103619 3.543842 -0.1469728 23.89788 32 SR AR A SR
its higher accuracy and its
suitability for discrete data.

RMSE, MAE, MPE, and MAPE are all measures of forecast accuracy.
Lower values indicate that the model performs better.

+ Accuracy: GLM model shows lower RMSE and MAE, indicating higher accuracy compared to the SARIMA model.
* Prediction Bias: GLM's MPE 15 closer to zero, suggesting it has less prediction bias,
* Ermor Percentage: GLM's lower MAPE demonstrates better performince in percentage error terms.

3 3 ( )
" @\
'l"l |
PUA TR
01 02
Both SARIMA and For forecasting The public health
GLM models capture Rickettsiosis case department can use
the overall trend in numbers in Malaysia, the statistical models to
rickettsiosis GLM is preferred due to develop more precise
case nuinbars in its higher accuracy and prevention and
Malaysia . its suitability for discrete control plans for
\ ) L data. ) I rickettsiosis. )




Comparative Analysis of ARIMA
Model and Generalized Linear

Model for Predicting MRSA
Infection Cases in Malaysia

WANG CUI
$2100923

Methicillin-resistant Staphylococcus aureus (MRSA) bacterium is a significant hospital-
acquired pathogen. It resists many antibiotics that treat regular staph infections, posing
a serious public health risk . Staphylococcus skin infection usually begin as swollen,
painful red bumps that may resemble pimples or spider bites. Sometimes the bacteria
stay on the skin, but they can also go deeper and cause serious infections in bones,
joints, surgical wounds, the bloodstream, heart valves, and lungs.

Data Background

9 - A

In this research , we study the monthly
\ cases of MRSA infections in two major
S /% R hospitals in Klang Valley from February
' 2020 to March 2022.The trend in the
N \ | |\, | number of cases over these 26 months,
WAV, .. | 7 | asshown in figure 2, is typically between
o 7 to 36.
The monthly number of MRSA infections
is a count time series . The variance of
our data is 59.26, exceeds the mean,
20.15, indicating overdispersion.
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Figure 2. Monthly Case Numbers of MRSA in the two
hospitals Malaysia from February 2020 to March 2022.

Motivation for the Study

The monthly infections number of MRSA is a typically count time series
with low counts. According to Stephan (2016),This kind series can no longer
be dealt with using the approximative methods that are appropriate for
continuous distributions. Given this requirement, it is clear that traditional

ARIMA methods are inappropriate as they assume a continuous sample
space for the data. In the absence of a generalized methodology, we are
interested in considering some specific classes of models and noting the
suitability of particular models for the count data. As a result, the
Generalized Linear Model (GLM), which is the most common model for
analyzing count data, became the model we wanted to analyze and
compare with ARIMA.

01.Fitting and forecasting with Auto Regression Integrated Moving

Average (ARIMA) Model
02.

Fitting and forecasting with Generalised Linear Model (GLM)

GLM
( Generalized Linear Model )

« The Generalised Linear Model (GLM), which is
the most common model for analyzing count data

ARIMA Model

(Auto Regression Integrated Moving Averqge)

« Is a statistical tool used for analyzing and
forecasting time series data.

« It combines differencing with The model is defined as:

p q
g = Bo + E Brg(Yiir) + E cx;g(,\t_ﬂ)+ nT Xt
k=1 —1

where

« { Yt :1tEN 1 stands for a count time series

« { Xt:tEN }is a time-varying r-dimensional
covariate vector

« At=E(Yt|Ft-1) is the conditional mean of the count
time series.

« The distributions we are interested in are the Poisson
distribution and the negative binomaial distribution.

autoregressive(AR) and moving
average(MA) components.

The model is defined as:

P
Xi=c+) ¢iXeite+
=1

q
E 9]'8;_3'
j=1

where
« p:order of the AR part
« g:order of the MA part
« ¢i,0j are coefficients
« C 1s a constant
o €t is the error term

Similar to ARIMA
« p:order of the AR part
« g:order of the MA part
«+ a.B are coefficients

Stepl.Fitting the ARIMA model

1.Split train and test set

Train Set: 2020 February ~ 2021 October
Test Set: 2021 November~ 2022 March

(The training set and test set account for 80% and 20% of the total data, respectively)

2.Stationary check
« ADF Test:(Null hypothesis-Nonstationary)

Augmented Dickey-Fuller Test

< Objective 01 >

data:
Dickey-Fuller = -2.5332, Lag order = 2, p-value = 0.3692
alternative hypothesis: stationary

ADF Test Result of d=0

Augmented Dickey-Fuller Test

train.ts_adj

we chose the difference order d=2,
the p-value is less than 0.05,

data: difference_train.ts_adj
Dickey-Fuller = -4.0548, Lag order = 2, p-value = 0.02134
alternative hypothesis: stationary
ADF Test Result of d=1
Augmented Dickey-Fuller Test

data: difference_train.ts_adj
Dickey-Fuller = -4.0548, Lag order = 2, p-value = 0.02134
alternative hypothesis: stationary

ADF Test Result of d=2

| £ .‘ B |

Table 1. Information Criteria H B '_ﬂﬂ

Model Name | AIC AiCc BIC E1 I 0T
ARIMA il L L

ARIMA(1,2,1) 143.6286 145.2286 146.4619 - - - i
(P—1 !d'zaq'1) s \

ARIMA(0,2,1) |144.6893 145.4393 146.5782

ARIMA(1,2,0) | 1511609 151.9109 153.0498

ARIMA(0,2,0) |159.0685 |159.3038 160.0129

Parameters P=1,Q=1 in this model means that the model uses 1 lagged data and one
prediction error to make predictions.
d=2: minimum number of differencing needed to make the series stationary.

Step2:Residual Diagnosis

Normal Q-Q Plot

Sample Quantiles
-5 10 -5 0 5 10 15

"""""""""""""""""""" il T T T T T
12 2 -1 0 1 2

6
lag [1M]
Figure 3: ACF Plot of ARIMA(1,2,]) models residual

Theoretical Quantiles

Figure 4: Normal Q-Q Plot of ARIMA(1,2,1) models
residual

* The ACF plot shows that most of the residuals are within the confidence interval, indicating little autocorrelation.

* The Q-Q plot of residual shows normally distributed since the points appears as roughly a straight line.

Y

< Objective 02 >

Model Selection
1.AIC & QIC method

The residual diagnostics suggest that the ARIMA(1,2,1)
model provides a reasonable fit to the data.

Negative binomial with

obtained is model with parameters p=1 and q=1
2.Compare the Scoring values

Model name logarithmic | quadratic spherical rankprob | dawseb normsq | sqerror
Poisson GLM 3.582194 | -0.0240271 | -0.1715512 | 4.227328 | 5294492 | 2.20975 | 48.38627
Negative-Binomial | 3.367235 | -0.0373987 | -0.1933294 | 4.020282 | 4.891814 [|0.85000|( 48.38627
GLM

Table 2: Scoring values of Poisson and
Negative Binomial
Similar to ARIMA, the parameters P=1,Q=1 in this model means that the model
uses 1 lagged data and one prediction error to make predictionsThe selected
distribution is Negative Binomial, it means that the model can be applied to
overdispersion data.

Residual Diagnosis
.

I'kgThe residual diagnostics suggest that the Negative Binomial
generalized linear model provides a reasonable fit to the data.

df$y

' ' ' ' ' ' l ' v, um e !
1 2 3 4 5 6 7 20 -10 0 10 20
residuals

Figure 6: ACF Plot of GLM models residual

< Objective 03 >

Figure 7: Histogram Plot of GLM models residual

Comparison
1.Compare Forecasting Plots
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Figure 9.Plot of Forecasting Results of ARIMA Model Figure 10: Plot of Forecasting Results of GLM Model
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* ARIMA model and generalized linear model (GLM) both roughly capture the overall trend
of the actual values
* Generalized Linear Model (GLM) seems better captures the upward trend of the actual
2.Com pare Accu racy Values

Model name RMSE MAE MAPE
ARIMA(1,2,1) | 5.724014 | 4.716344 | 35.32365
Negative-Bin | 7.758253 | 6.855503 | 65.89999
omial GLM

Table 4 Forecast Accuracy Valus of ARIMA and GLM for MRSA Infection Cases
Q

Both ARIMA and generalized linear model (GLM) capture the overall trend
in MRSA infection numbers in two major hospitals in Klang Valley.

In comparison , generalized linear model (GLM) is more appropriate for
forecasting MRSA infection number.

Continuous data collection on MRSA infection cases in Malaysia is
ecssential. Addressing the data's limitations is crucial for developing and
analyzing more robust models in the future.
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CADStrace

This study investigates electron scattering from zinc atoms,
emphasizing the calculation of phase shifts and differential cross-
sections. The research employs the Schrodinger equation to model
electron interactions, converting complex equations into a solvable
format using a similarity transformation. Numerical solutions are
obtained via the Runge-Kutta method solved using R studio software.
Results indicate that higher electron energy increases both phase
shifts and differential cross-section values, revealing significant
changes in scattering amplitude and cross-section distribution.
Additionally, the influence of potential energy affected by exchange
and polarization effects becomes more prominent with increased
electron energy, highlighting the physical parameters' critical role in
scattering dynamics. These insights have implications for material
analysis, radiation therapy, and semiconductor technology, providing
a basis for optimizing electron scattering conditions.

Mathematical Model

The numerical method used to solve the second order radial
differential Schrodinger equation in the Runge-Kutta method.

Optical potential,

Objective

a)To compute elastic scattering amplitude and differential cross-sections for
electron-Zn atom interactions spanning an energy range from 25 eV to 80eV.

b)To validate the computational approach by comparing the computed differential
cross-sections with theoretical models

c)To develop numerical algorithms for each formulated problems and programming
for computations in generating numerical solutions via R Studio software.

Literature Review

1. Electron Scattering

« The study of electron scattering using cathode ray was initially founded by Sir J.J.
Thomson in 1897, which is also the groundbreaking experiment in the late 19th
century.

« Garcia and Wang (2024) developed a sophisticated theoretical model to mimic
electron scattering in intricate molecular systems by combining quantum mechanics
with machine learning algorithms.

2. Elastic and inelastic scattering
« The first investigations by Sir J.J. Thomson in 1897, which showed that
cathode rays were made of negatively charged particles subseqguently
dubbed electrons, laid the groundwork for our understanding of electron
scattering.
3. Cross-section Analysis
« In 1984, Trajmar et al. published a comprehensive compilation and critical
assessment of available cross-sections for electron-molecule scattering.
= Lee and Park (2017) defined total cross-sections as the likelihood that an electron will
experience any kind of scattering event, providing a fundamental understanding of
these processes.
» Smith and Jones (2019) investigated differential cross-sections, shedding light on
how scattering probabilities change with energy and direction

4. Electron-Zinc (Zn) scattering processes
« The optical excitation functions of Zn for many transitions have been
measured in Shpenik et al. (1973) and Souter et al. (1974).
« Zn represents a quasi-two-electron atom, like helium, beryllium, and
magnesium, making it valuable for testing theoretical models, especially
where relativistic effects might be important (Marinkovic et al., 2019).
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Methodology

1. Static field approximation, which simplifies the electron-atom interaction by assuming a static,
time-independent potential.

2.To solve the Schrodinger equation, the study employs the Frobenius series expansion
method.

3.Using Runge-Kutta, the R studio software used to numerically solve the reduced form of
mathematical model.

4. The results are presented graphically, illustrating the relationship between electron energy and
phase shifts, as well as the variation in differential cross-sections.

Differental cross sections

Scattenng angles (deg)

Figure 5.3, Differential cross section for electrons incldent at BD eV on
Bound zinc atom in the SPX approximation.
= The significant differences between the DCS results obtained in my study using the SPX approximation and Kelemen et al (2023}

is be largely attributed to the simplifications inherent in the SPX model.
The significant differences observed can be attributed to several factors:
= The SPX model employs a straightforward combination of static, polarization, and exchange potentials. This contrasts
with the detailed and parameterized potentials in the RSEPA and RSEF models, which include contributions from
spin-orbit interactions and relativistic corrections.
« Kelemen et al (2023) include absorption potentials that account for inelastic scattering processes. The SPX model,
however, is purely elastic and does not include such effects.
= The Kelemen et al (2023) model predicts detailed pattems in forward and backward scattering, including the impact of
various partial waves and the inelastic confributions. The SPX model, with its simplified approach, may not fully
replicate these detailed patterns, resulting in differences in the observed |ocal maxima and minima, as well as
variations in the intensity of scattering at extreme angles.
« Kelemen et al (2023) include detailed treatments of exchange and correlation effects through various potentials, such
as the Furness-McCarthy (FM) potential and its modifications.
= The accuracy of the scaftering computations is strongly dependent on the choice of angular momentum, especially at
higher angles when the contribution of higher-order partial waves becomes greater.

Conclusion

Overall, this work serves an extension study of Kelemen et al (2023) who use complex model but in my
study we used simple model. The significant differences between the DCS results obtained in my study
using the SPX approximation and Kelemen et al (2023) can be largely attributed to the simplifications
inherent in the SPX model. These simplifications, while beneficial for computational efficiency, result in the
exclusion of complex interactions and inelastic effects that are critical for a detailed understanding of
electron scattering processes. This highlights the necessity for careful consideration when selecting a
model for DCS calculations, ensuring that the chosen methodology aligns with the specific goals and
accuracy requirements. In conclusion, this work of study demonstrated the fulfillment of the two objectives
outline at the beginning of the study.
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Abstract
General relativity is a crucial topic that serves as a cornerstone in
the revolution of our understanding of spacetime and gravity. Concepts
such as dark matter, dark energy, and black holes are fundamentally
based on the principles of general relativity.

Objectives

The main goals for our research are:

e Explain the derivation of Einstein’s Field Equation in general
relativity;

e Apply Einstein’s Field Equation to construct some basic cos-
mological models;

e Briefly explain the origin of cosmological constant and the
notion of dark energy.

Historical Overview

The story behind the Albert Einstein’s work on general relativ-
ity:
e In 1905, Albert Einstein published his paper entitled ”On the

Electrodynamics of Moving Bodies”, which introduced his
theory of special relativity;

 Albert Einstein tried to seek for the natural extension of spe-
cial relativity which included the effects of gravity;

* He comes out the Einstein’s Equivalence Principle and real-
1zed that the space 1s curved;

* He sought out his classmate at Zurich’s University, Marcel
Grossmann to teach him tensor calculus and Riemann geom-
etry, which describe the movement of objects in space and
time and also describe the dynamic frame of reference;

e Early development of tensor calculus are done by Grego-
r1o Ricci-Curbastro, Tulio Levi-Civita, and Professor Luigi
Bianchi;

e Einstein’s student David Hilbert also attempted to derive Ein-
stein’s Field Equation before Einstein. In the end, both of

them managed to derive the same equation by using different
methods by November 1915;

 Einstein derived the equation by realizing Second Bianchi
Identity 1s proportional to Noether’s theorem. While Hilbert
derived the equation using Lagrangian approach.

Tensor Calculus

e Covariant Tensor,

oxM or* grhm

Airiiiyy = Aras.on oo (1)
e Contravariant Tensor,
Aj1j2---jn — 1215152---571 Oz)! D)2 (?:L“]”. (2)
8@51 35;52 ajﬁn
e Connection,
h h =\ =
My =ay\ (@ +T W??%flfyj)- (3)
e Christoffel Symbol,
o 1
F)\/LV — 59)\04(({%904# + Ougow — ozg/w)- (4)
e Covariant Derivative for Covariant Vector,
VA =0;4; — T, A (5)
e Covariant Derivative for Contravariant Vector,
. o
VjAZ = 6]'147’ + Fll]-A : (6)

e Riemann-Christoffel Curvature Tensor,
Ryaw = 00l — 010 + 1000, — T, 0% (D)

e Ricci Tensor,

R,LW — RO;Law (8)
- Rﬁ/lou/gaﬂ' ©)

e Ricci Scalar,
R = RVV, (10)

Einstein’s Field Equation

Einstein’s Approach

From Bianchi Second Identity,

1
V,U<R,uu — §g,uuR) = 0, (12)
1
GH = RHY — ég'uyR. (13)

Since V;,G"” = 0 and we assume V /T = 0,

1

After we solving for k,
1
Hilbert’s Approach
Our total action gravity 1s as follows:
S =vSq + KSm, (16)
S = / L(D,V, ) d" . (17)
We can separate S, into three parts:
0S5g = 051+ 052 + 0953, (18)
= /dnmx/—gg“%RW, (19)
532 — /dnaj\/ _gRuy(gg'uV, (20)
R 0
555 — /d%(—Q\/Tg(ngmgW. 21)

051 will equals to O by Stokes’ Theorem. After that we will get
the following:

1
38y = [ (R~ JRowlV=g0g"™d". @

After we get 0.5, then we substitute it into (16) to get Einstein’s
Field Equation,

1

Cosmological Constant

We take S = (S; + Sp) + £Sm,

1
Ruy = 5 Ry + Mgy = 87G Ty, (24)

Cosmos with only matter and radiation

e Ricci scalar of FLRW Metrics,

a a 9 K
R=06|—+ (- — . 25
S+ G2+ 25
e Friedmann Equation,
ao Kk 8tGp A
- I — 26
<a> " a? 3 3 (26)
e Acceleration Equation,
a N AnG
- 3n). 27
~ =2~ (p+3p) (27)
e Energy Conservation Equation,
, a
p=—3-(p+p) (28)

a
By using Energy Conservation Equation, we do able to ex-
press energy density in terms of w.

p=po(= ) 29)

e Einstein-de Sitter Universe,

t .2
a(t) = ag(t—)B, (30)
0
2
tg = —. 31
0= 3H, (31)
e Radiation Dominated Universe,
t.1
a(t) = aO(t_>2’ (32)
0
1
to (33)
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The Universe with Cosmological Constant

e Einstein’s Static Universe,

|
A (34)

agn =

e De Sitter Universe with k = —1,

alt) = \/% sinh( %t). (35)

e De Sitter Universe with xk = 0,

a(t) = aoe\/gt. (36)

e De Sitter Universe with k = 1,

a(t) = \/%cosh(\/gt). (37)

Now we are looking at some tools which help us to relate the
non-observable parameters with observable parameters.

e Redshift,

1

te) = . 38
alfe) Il +z2 (58)

e Instantaneous Physical Distance,

" dr
dp(t) = alt / . (39)
) (&) 0 V1— kr?
e Luminosity Distance Formula,

dr, = (14 2)a(ty)r. (40)

Conclusions

In conclusion, we have successfully derived Einstein’s Field
Equations by employing the Einstein-Hilbert action, a pivotal
step 1n our journey through the realms of theoretical physics.
These equations have served as the foundation for deriving
several other fundamental equations, including the Friedmann
Equation, Acceleration Equation, and Energy Conservation
Equation, among others.

Furthermore, our exploration extended to various cosmological
solutions within the framework of general relativity. We delved
into the origin of the cosmological constant in Einstein’s Field
Equations and its reinterpretation as dark energy, based on em-
pirical evidence such as supernova measurements. Additionally,
we discussed how cosmological models are verified through the
measurement of key cosmological parameters, redshift, instan-
taneous physical distance, and also luminosity distance formula
on the intricate workings of our universe.
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IDENTIFYING SIGNIFICANT FACTORS IN
HOSPITAL AND COMMUNITY-AC
USING LOGISTIC REGRESSION M
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INTRODUCTION

Methicillin-Resistant Staphylococcus aureus

UIRED MRSA
DELLING

SUPERVISORS: DR NORLI ANIDA

DR NUR ANISAH
METHODOLOGY

. . . STUDY AREA AND SOFTWARE
(MRSA) infection originates from a group of ' DATA SOURCE
Staphylococcus bacteria that has become Malaysia . RStudio
resistant to many antibiotics typically used to @ . 5 #w=% NATIONAL INSTITUTES OF HEALTH
treat standard Staphylococcus infections. Most " R ~====ae- MINISTRY OF HEALTH MALAYSIA

MRSA infections occur in people who have been
hospitalized or have had contact with
healthcare settings such as hospitals and
dialysis centers, and are known as hospital-
acquired MRSA (HA-MRSA). MRSA is also found in
community clusters, such as among child care
workers, athletes, and people who live in close
proximity. This form is known as community-
acquired MRSA (CA-MRSA).

OBJECTIVES

1. To investigate the association between type

of gene and infection type using chi-squared
test.

2. To model the dataset for the identification of

significant factors in HA-MRSA and CA-MRSA
using logistic regression (LR) model.
3. To evaluate the performance of the model
using testing dataset.

RESULTS AND

CHI-
SQUARE
=1

MULTICOLLINEARITY

BACKWARD
ELMINATION
METHOD

MODEL

PERFORMANCE
EVALUATION

Examined the association between MRSA type (HA or CA) and the
presence of 16 virulence genes.

e The dataset was partitioned into two subsets

e 90% for training and 10% for testing.

e Analyzed data to identify key predictors of HA and CA-MRSA,
focusing on virulence genes, age, and infection source.

VIF (Variance Inflation Factor) was used to detect
multicollinearity in our model, helping to identify which
predictor variables are correlated with each other.

Improved the model by gradually removing the least
important predictors.

¢ The performance of the model was evaluated using
accuracy and AUC (Area Under the ROC Curve).

e Accuracy measures the proportion of correctly
classified instances, while AUC assesses the model's
ability to distinguish between classes.

DISCUSSIONS

H i . . .
5 3§ ?’;‘ distr-IBSticcc)):t(I?%?rchlIe/rI?sIeeiheos\/\iﬁ I—Ih:and In Model 1, all predictors were included, yet none exhibited a
seb 17 1 7 cA The p-value of the ch%—s uare test for satisfactory p-value, indicating insignificance. Subsequently,
sec 15 | 13 thé assopciation between M(I;ISAt e and multicollinearity assessment using VIF revealed severe
Sed 45; 153 the presence of these 16 virulengg enes multicollinearity with SCCmeclV, registering a coefficient of 11.74.
:::j == P ic 0.01366. which i< below theg Thus, in Model 2, SCCmeclV was omitted. In Model 2, none of the
Al 370 | 152 convent.ional in nificance level of 0.05 predictors are statistically significant, and the chi-square goodness-
hig 354 | 146 This indicates tghat there is si nific:.ant‘ of-fit test yields a very low p-value, indicating a poor model fit. No
fnbA 46 | 32 evidence to suggest an asscigciation multicollinearity was detected in Model 2. Consequently, the
‘Ei’i gg ;; betweeﬁgM RSA type backward elimination method was employed to improve the
sccmec:” E é (HA or CA) and the presence of various model's accuracy and interpretability in model 3.
SCcmec 0 .
T o virulence genes.
TYPE OF GENE |sccmecV 20 15
. call:
From the confusion glm{formula = Haca ~ pv1, family = binomial{link = "Togit"), There is only one
matrix, the model's data = train) P :
0 (Predicted) |1 (Predicted) : Zignieant preelemey
" . P accuracy is calculated to Coefficients: variable in model 3. The
0 {Actual) J 3 be 94.44%, indicating ) _ Estimate std. Error z value pr(>|z|) odds ratio for pvi
1 iActual) H 42 . . (Intercept) 0.9050 0.1080 g.538 =2e-1g www p
W ! - thatthe mOdeI IS hIgth pv1 -0.6173 0.7901 -2.128 0.0333 = (Panton-Va/entlne
accurate. Signif. codes: ©0 *+**’ 0,001 ‘s’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1 leukocidin)is 0.5394. This

(Dispersion

The AUC for the ROC curve
shown is 0.875, which means that
Model 3 has an 87.5% probability

of correctly distinguishing
between HA-MRSA and CA-MRSA.

ATC: 601.61

Mull deviance:
Residual deviance:

Number of Fisher Scoring iterations: 4

indicates the odds of pv/
being detected in
CA-MRSA are 53.94%
higher than in HA-MRSA.

parameter for binomial family taken to be 1)

602.00
597.61

on 489 degrees of freedom
on 488 degrees of freedom

CONCLUSION

In conclusion, this study identifies pv/ as a key significant factor in CA-MRSA, consistent
with existing scientific research. It provides robust statistical evidence supporting the
significant role of pv/ using logistic regression model . This underscores the need for

targeted pvl-specific interventions to improve the prevention and management of
CA-MRSA infections.
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Introduction

List of Nonisomorphic Groups

The fundamental theorem of finitely generated abelian group is fre-
quently used to classify and study the different structure of abelian
oroups. It is a generalization of the fundamental theorem of finite
abelian group proven by Leopard Kronecker (1870) and who defined
a arbitrary set of elements with an operation satisfying certain laws
which now known as finite abelian groups.

F.G. Frobenius and L. Stickelbelger (1879) proved the fundamental
theorem of finite abelian groups with a group theoretical approach
and formulated the finite abelian group theory to modern mathemat-
ical views. Later, Poincare (1200) and Emmy Noether (1926) gave
a proof for the fundamental theorem of finitely generated abelian
oroups which does not have the restriction on finite abelian groups.

We can use the theorem to generalize the structures of finitely gen-
erated modules over a principle ideal domain and use the theorem
for other applications such as study the structure of the groups and
finding isomorphic abelian groups of an given group.

Fundamental Theorem of Finitely Generated
Abelian Groups

There are two forms for the theorem namely:

Invariant Factors Decomposition Every finitely generated abelian
oroup G Is Isomorphic to a finite direct sum of cyclic groups
in which the finite cyclic groups are in the order
mi, Mo, - -+ ,my Where my > 1 and mq|ma| - - - |my.

G=ZZp DL, ® -+ DLy, ®F
where F'is a free abelian group.

Elementary Divisors Decomposition Every finitely generated
abellan group Is isomorphic to a finite direct sum of cyclic
groups, each of which is either infinite or of order a power of

d prime.
ngpnl@Z"Q@@Z”t@F
1 Do Dy

where F'is a free abelian group, p; are primes and n; are
positive Integers.

Remark on the Theorem

- For a finite abelian group, the decomposition of the group does
not contains the free abelian group part.

- |f the group G is a free abelian group, then it is isomorphic to the
oroup F' stated in the theorem.

Using the theorem, we can get all the possible combinations of non-
iIsomorphic abelian group of order n.
For invariant factors:

- Find the prime factorization of n and list out all the possible m;.

- For each my, work out all the possible combination of
mi, Mo, . .., My such that mq|meo| ... |m.

For elementary divisors:

- Find the prime factorization of n and find the partition of each
power of the prime factors.

- The direct sum of the p* where k is the partition of the power of p
Is the nonisomorphic list for the prime factor. Last we just pair
each combination of a prime factor to other factors to obtain the
ist of the abelian group of order n.

For a group of order n = p{'py” - - - pi.*, the number of nonisomorphic
abelian group is the product of the number of partition for each «a;.

Maximum Order of Elements in an Abelian
Group

The maximum order of elements in an abelian group can be deter-
mine by using the theorem and some tricks. If we know the decom-
position of the group, we can find the maximum order of elements
from the group by finding the lowest common multiple of the order
of each cyclic group.

For example, the element in the group Z4 has element of order 4 but
the group Z,®7Z, only has element of maximum order 2 even though
both group are of order 4. This is a useful tools that we can use to
determine the isomorphism.

Isomorphism Between 2 Abelian Groups

Every element from A can be mapped
to anelement from B with the same
order.

Group A and B have the same order
and they have the same invariant
factors or elementary divisors

We can show that two groups are isomorphic or not by using the
conditions above. As mention in the previous part, we can conclude

that Z, 2 Z, @ Z, because they exist an element of order 4 in one
oroup that cannot be mapped into the other group. Using this we can
also match up the pair of invariant factors and elementary divisors
from the list for order n.

Classification of Abelian Groups

By using the statement from before we can now determine the iso-
morphic group of any given abelian group by the following steps:

Note that fora group Z,»® G is a subgroup of Z,»®G for all integer
0 <m <mnandGIs a group.

Other Applications

- Finding the number of subgroups for a given finitely generated
abelian group.

- Finding number of elements with certain order for a given finitely
ogenerated abelian group.

- Investigate and classify the structure of the factors group of a
finitely generated abelian group.
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ANALYZING URBAN DEVELOPMENT AND ACCESSIBILITY
THROUGH FRACTAL DIMENSIONS OF ROAD NETWORKS
IN PETALING JAYA, SELANGOR, MALAYSIA
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Supervised by: Dr. Shahizat bin Amir and MALAYA
Dr. Mohd Zahurin Mohamed Kamali

PROBLEM STATEMENT

Urbanization, a hallmark of modern society, necessitates Petaling Jaya city has complex connections of its road networks
sustainable planning as cities grow. In Petaling Jaya (PJ), and growth patterns. Accessibility of a city is a crucial thing to its
Malaysia, a city of over 600,000 residents spanning 97.2 square development, thus the road networks contribute a major role to
kilometers, managing urban expansion and accessibility is determine the correlation. However, we need to use conventional
crucial. Traditional analysis methods, focusing on metrics like methods to observe and statistically analyze road networks, its
road length and population density, often miss urban accessibility and the urban development

complexity. This study proposes using fractal dimensions to

analyze Petaling Jaya's road networks, uncovering patterns and OBJECTIVES

structures of urbanization. Fractal analysis offers enhanced « To investigate and observe road networks of Petaling Jaya and
connectivity insights and a visual understanding of urban form, its accessibility through fractal dimensions.

aiding better infrastructure development and planning for « To investigate and observe how accessibility correlates to urban
improved accessibility and quality of life. development through fractal dimensions.

METHODOLOGY RESULTS

Data being cropped
and calculated by Box
Counting Method

Data being process
into a map and some
data are taken from
Open Steet Map

AT CEOPATIAL WGABA. Each data being
/ convert into image

to be checked
Data received from

Pusat Geospatial
Negara in shapefile

Box COU ntlng MethOd PJU (North) SS (West) Seksyen (East) PJS (South)
This method entails placing a grid of boxes with different
sizes over a fractal pattern and tallying the number of Transportation 1.5677 1.6267 1.5255 1.4990
boxes that intersect with the pattern. This procedure is =
iterated with 2,3,4,6,8,12,16,32,64 boxes for this research, Envi?g:ll%ent 1.7015 1.7125 1.5968 1.4523
IIE=E ERED e and the correlation between the box count and their sizes is
leveraged to compute the fractal dimension Overlap Both 1.7469 1.7545 1.6473 1.5530
DISCUSSIONS
Petaling Jaya and Its Section Analysis Accessibility
¢ Petaling Jaya has an overall fractal dimension of 1.8204, indicating ¢ Overall road network fractal dimension 1.7008 that is high in
high urbanization. All city sections have dimensions exceeding complexity
1.5000, reflecting favorable urban conditions. ¢ PJS has the lowest road network dimension with 1.4990,
e Sungei-Way Subang (SS) has the highest complexity that is 1.7545, indicating less efficient infrastructure of road.
dedicating SS as most urbanized section. e SSis the most accessible of all section, with highest
e Petaling Jaya Utara (PJU) is the second highest of urbanization that connectivity to other sections.
is 1.7469 which highly accessible and well-developed. Built Environment
¢ Seksyen has a moderate complexity with fractal dimension of 1.6473 ¢ Overall fractal dimensions is 1.7871 with SS and PJU that are
and have increasing attractiveness and residential growth. most well-developed with numerous amenities.

e Petaling Jaya Selatan (PJS) has the lowest complexity of that is * Seksyen is close to optimal urbanization with 1.5968.
1.5530 which likely to be less accessible and urbanize but has the ¢ PJS has lower complexity but steady population growth and
potential for future development. potential for future development.

CONCLUSION ACKNOWLEDGEMENT & REFERENCES

Analyzing Petaling Jaya's road networks through fractal dimensions reveals

insights into accessibility and urbanization, identifying areas for potential 3 ’_ {
planning improvements. This study highlights the complexity of the PJ's road i .ﬁ p
structure and suggests integrating fractal dimensions into urban planning to = h‘:,'.

enhance mobility, land use, and infrastructure investments. These findings R s

PULAT CIOLPATIAL NIGARA

support sustainable urban growth and improve quality of life for the future
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INTRODUCTION METHODOLOGY

Methicillin-resistant Staphylococcus aureus (MRSA)
infections are rapidly spreading in Malaysia, and a
particularly high number of cases are occurring.
Forecasting of MRSA growth is essential for
healthcare authorities to implement timely

preventive measures.

This study focuses on predicting the future trend of
MRSA infections in Malaysia using time series
models, and it finds that the ARIMA model is the
most suitable one. Through detailed analysis, ARIMA
(1,2,1) was identified as the most effective model for

this purpose.

The findings demonstrate that the ARIMA model can
reliably forecast future MRSA cases, providing
valuable insights for public health authorities to
enhance their strategic planning and response

efforts

OBJECTIVE

¢ Justify the selection of the ARIMA
model based on its fit to the data
compared to other models.

¢ Train the ARIMA model using MRSA
case data from 2020 to 2022.

e Forecast future MRSA cases in Malaysia
using the trained ARIMA model.

e Highlight key insights gained from the
forecast.

RESULT 6 DISCUSSION

Split the data into training and testing sets.

Transform the data to reduce variance and differentiate it to
achieve stationarity.

Verify stationarity using the Augmented Dickey-Fuller (ADF) test.
Ensure the p-value from the ADF test is less than 0.05. If the p-
value is greater than 0.05, apply additional differencing to the

data.

Analyze ACF and PACEF plots to identify potential models

based on data patterns.
Use ACF and PACF to assess the suitability of AR (p) and MA
(q) models and identify possible candidate models.

N
A

¢ Determine the parameters for potential models and select the

most appropriate ones.

Choose the best model based on the lowest AIC or BIC value.

Verify that the residuals' ACF and PACF indicate white noise.

¢ Use the p-value from the Ljung-Box test or a normal probability
plot to check if the residuals are normally distributed.

Use the selected model to forecast the time series.
Verify forecasting accuracy by comparing forecasted values

with actual values.
After validating the model, refit it using the entire dataset.

—_———— e

concLusion

MODEL AlC AlCc BIC

146.58

Data Limitations:
Short Data Length:

» With only 26 data points, capturing long-
term patterns and trends becomes
challenging, which may impact the model's
ability to make accurate predictions.

Potential Seasonal Patterns:

e The short length of the dataset may
obscure potential seasonal patterns that
could be better understood with a longer
dataset.

0.2.1 144.69 145.44
1.2.0 151.16 151.91 153.05

i
|
|
|
|
f,\/\ |
/ iy /\VM A | 221 14505 | 1479 | 14882
/\/ —/ | 020 | 15907 | 1593 | 16001
|
|
|
|
|

Utilizing historical MRSA case data collected by the National Liespere iz Eler iy § Mee ZB UL e BT

Institute of Health from February 2020 to March 2020, a time
series plot was generated, comprising 26 observations. The
training set includes monthly cases from February 2020 to
October 2021, while the testing set spans from November
2019 to March 2022. The plot illustrates that MRSA infections
in Malaysia exhibited a non-stationary trend and
demonstrated an upward trajectory over the years.

estimated from the ACF and PACF plots. Based on
the table, it is observed that ARIMA (1, 2, 1) shows
the minimum values of these measures.

Model Performance:

Malaysia from October 2021 to March ithin th Accuracy Metrics:
I aaysia from Jctooer o March are within e e The low ME and MASE values suggest the

I
I
|
I
I
I
I
I
I
I
I
It is observed that the number of MRSA cases in I
80% and 95% confidence interval, which shows that , model performs reasonably well regarding

I

I

I

I

I

I

I

I

I

I

I

I

I

the forecasting values are acceptable. TheME and scaled error. Yet, the large deviations in
MSE of the forecast values are -1.00 and 0.62, forecast values indicate that further

respectively, which arerelatively low. In general, improvements are necessary.
the forecastresults are acceptable.

Future Improvements:
Data Enhancement:

e Increasing the dataset length by including
more months or incorporating relevant
external data (e.g., hospital policies and
seasonal trends) can improve model
accuracy.

Model Complexity:
» Exploring more sophisticated models such

as SARIMA, Prophet, or neural networks

test data
- forecagt

0 20 30 40

o

We applied first-order differencing as the initial data was non-
stationary, yet the data remained non-stationary. Consequently, T ' T T
we proceeded with second-order differencing. Upon reviewing l wee e mme

the ACF and PACEF plots for the second-order differencing, we |

<20 10

. A . . : A Month forecas actual Lo 80 Hi 50 Lo 95 Hi 95 0 0 Q
observed no decay, indicating stationarity. Notably, the partial I NM_;I rs : > — R TR could potentially yield better forecasting
autocorrelation function displayed significant spikes at lags 1 and Dec-21 129 12 0.74 2646 | -7.95 | 3386 results, especially if there are underlying
2, suggesting a potential AR model order of 1 or 2. In contrast, the | fadt 22 = e e complex patterns not captured by simpler
autocorrelation function exhibited a significant spike at lag 1, l Mar-22 127 17 .75 3400 | 2009 | 4542 models.

implying a possible MA model order of 1.
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1. Abstract and Objectives

In an attempt to obtain exact solutions to Ein- Symmetric Teleparallel Geometries refer to the class of spacetimes with zero torsion and curvature,

stein’s field equations, we derive the most general which can be found by setting T>;L = RAMOW — (.
metric and affine connection that respect various

spacetime symmetries. Furthermore, we consider
the case of symmetric teleparallel geometries by
imposing vanishing torsion and curvature. Lastly,
we obtained the general modified Friedmann
equations for various f(Q) gravity theories with the
FLRW metric and a perfect fluid universe.

4. Symmetric Teleparallel Geometries

To determine the most general metric and connection under a given set of symmetries, we
set the Lie derivative of the metric and connection to be 0 for each Killing vectors X associated
with the spacetime symmetries: 0 = (Lxg). = (LxI')7,,-

For a spacetime with spherical symmetry, the most general symmetric teleparallel metric is:

Objectives git Gt 0 0
e To determine the most general metric and grt  Grr 0 0

. . . . Guv =
connections of spacetimes with certain sym- o 0 0 9o 0
metries. 0 0 0  ggosin? 0

To determine a special case where the torsion

and non-metricity tensor vanishes (known as while the most general symmetric teleparallel connection is in terms of 12 functions of ¢ and r:

symmetric teleparallel geometries) C1 Co 0 0 7 - 0 0 Co —(C'11sinf 7
To obtain the modified Friedmann equations ; Co C3 0 0 0 0 0 Ci0 —Ci9sinéf
. . . I = I’ =
in symmetric teleparallel FLRW universes us- pv 0 0 C~ 0 pv Co C1o 0 0
ing the f(Q) field equations. 0 0 0 (Cvsin? 0 —(C'118in  —C'12sinf 0 —sinf cosO_
2. Background Cys C5 O 0 -0 0 Cricscf  Cg ~
Cs C 0 0 0 0 Cig2cscl C
Einstein’s General Relativity (GR), published in I y — ° ° Fqb,uz/ — + -
. ah . K 0 0 C's 0 ('11csc (19 csch 0 cot 6
1915, is the current best description of gravity. How- Ce sin2 0 O . 0
ever, GR is not the full story of gravity. 0 0 0 8 SIn- U_ i 9 10 cot 0
Notable issues include: For spacetimes with spherical and translational symmetry, we obtained the FLRW metric for scale
e What causes the expansion of the universe? factor A(t) and lapse function N (t):
e Does dark matter and dark energy exist? ,
Potential modifications of GR include: ds? = —N? (t) dt? A (t)2 dr? + A? (t) r? do? + A? (t) r? qin? @ d¢2,
. [(Q) gravity L= hr

e Loop quantum gravity and string theory . . . . . . . .
For spacetimes with spherical, translational and time symmetry, we obtained the since disproven

e Conformal field theories . . . . :
Einstein’s static universe metric.

dr
1 — kr?

3. Tensor Calculus ds? = gydt? + go ( - 2d0? + 2 sin® edng) .

The metric tensor g,, are the components of the
distance formula:

5. Applications to Cosmology

ds® = g dztdz” .
f(Q) gravity is a modified theory of gravity using the non-metricity scalar Q and an aribtrary function
satisfies the transforma- f(Q), while requiring vanishing torsion and curvature.

An affine connection I'*

787
tion rule:
Assume a perfect fluid universe with mass density p and pressure p with the FLRW metric,

~ 97k \ Opr ok 7 YRR o f(Q) field equations (with 87G =1 and ¢ = 1):

- o’ ( o*zF -, 0% aﬁ)

2
The torsion, non-metricity and Riemann curvature ﬁ Rt 1 o (Q df f> L9 d* f (V, Q)P — T
tensor are defined respectively as follows: dQ 2 dQ dQ? e
TAW — FAW — T, " e« Non-metricity scalar Q
QMVP — augwo _ FA;WQA/O _ Pkupgwx SHK 3K K S3Ko K
o = Qo P = —6H* + 9HK3 + 3K K3 — 3K} A & — 2723
RAMOW _ aaFAW B &/FAMQ +TA T Y T Q= Quy + 3 T 1433 3 A2 A2 A2
_ where K1, Ko, K3 are functions of time, H = % is the Hubble parameter and P¢,, is the
6. Conclusions non-metricity conjugate tensor.
As a conclusion, we explored the history of e There are 4 possible cases, depending on the value of £. One such case is kK = 0:
Finstein’s theory of General Relativity and its P
modifications. Q=-6
d d 1
. . . . p=3 H?2 f_Qdf - f
To find solutions to Einstein’s field equations, dQ 2dQ 2
we determined the most general symmetric __app df . d? f dQ | Q df 1 ) df dH
teleparallel metric and connection satistying p= dQ dQ2 dt ' 2 dQ §f dQ dt

some desired symmetries, deriving the FLRW

metric as a consequence.
(. References
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obtained some modified Friedmann equations
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ABSTRACT

The spatial variability of housing market determinants leads to differences in
market activity and in real estate prices and values across different areas. This
study analyses housing prices through spatial analysis in two different case
studies: the suburbs of Perth and the towns of Boston, aiming to determine the
existence of spatial autocorrelation. The Perth dataset is analysed using both
non-spatial and spatial models, specifically the ordinary least squares (OLS)
regression and the Manski model, respectively. The low rank spatial lag model
(LSLM) with the selected spatial variables from the dataset was fitted to the
Boston dataset.. The results from the first case study, Perth, showed a weak
spatial autocorrelation and the data was proven to be a poor fit for the Manski
model. However, the second case study, Boston house price data, showed o
moderately strong spatial autocorrelation, and the low rank spatial lag model
proved to be a good fit for the data. Several spatial variables were identified to
have a direct impact on housing prices in the region.

INTRODUCTION

DATA DESCRIPTION

Spatial analysis has been used to study, understand and derive the insights from the spatial data either Perth

geometrically or geographically.One of the crucial uses of spatial analysis is to predict the housing prices in a e Housing price dataset obtained from 2021

region. In earlier times, the method for analysing the data through a perceived spatial lens is by modelling e Consists of 19 columns

the data onto the ordinary least squares (OLS) regression. As years went by, spatial models such as the

Manski model and the low rank spatial lag model were developed. This study aims to conduct a spatial Boston

analysis on housing prices with two different case studies, which are the suburbs of Perth and the towns of e Housing price dataset obtained from the 1978 census
Boston. This study also aims to compare the two case studies to determine the existence of spatial e Well known dataset for conducting spatial analysis
autocorrelation in the housing prices and spatial features which could be the factors that affect the housing e Consists of 14 columns

prices in Perth and Boston.

DATA COLLECTION M E T H O DO LO GY
l e Moran's | Statistic
DATA PREPROCESSING
= N i=1 2j=1 Wi O — ) (o — W)
l i=12j=1Wij imq (o — p)?

EXPLORATORY DATA ANALYSIS

l

e Estimated based on covariance
e |Index values ranges from-1to1l

o N e T e Y
-~/ /o J N J

,fori #j,

e The Manski Model

Y= pWY +a;,+XB+WX0+u, Spatial Models

e To calculate the impact of
the spatial variables onto
the dependent variable

e Provides the direct,
Indirect and total impact
onto the dependent

u= AWu+ ¢,
* The Low Rank Spatial Lag Model

yi = PBo+ € +z,

STOP = SPATIAL ANALYSIS e \alues above O give a positive spatial autocorrelation : z - variable
— . . . . €, ~N(0,0%)z; = PZWUZI"' inkﬁk‘*'ui:
l e \alues below O give a negative spatial autocorrelation o et "
MODEE SEYECTION e Ordinary Least Squares (OLS) Regression The spatial weights matrices generated for these models are the Queen
. . . . contiguity weights which are a combination of Rook contiguity (only common
] * Provides the mpact of the spatial variables to the vertices) and Bishop contiguity (only comon vertices).
dependent variable
[ IMPLEMENTATION AND REPORT ] e Calculates adjusted R-squared value which gives the {
percentage of variability in the data due to the selected i = 1 ‘1] > U
Workflow of the study spatial variables J 0 /.. — ()
‘2]
2) BOSTON MAP OF BOSTON
]) PERTH OLS REGRESSION LOW RANK SPATIAL LAG MODEL CMEDY |
MAP OF PERTH Predictors Estimates Confidence Interval p-value e The crime rate (CRIM) and proportion of ?otcicho
\_ (Intercept) 1833.08 1812.86 — 1853.30 <0.001 owner-occupied buildings prior to 1940 .ig :0 jg
LAND AREA -0.00 0.00 — 0.00 <0.001 (AGE) significant negative effect towards the 8 <0050
NEAREST STN DIST -0.04 -0.04 —-0.04 <0.001 median value prices
CBD DIST 0.03 20.03 — -0.03 <0.001 e The Charles River dummy variable (CHAS)
NEAREST SCH DIST 8.01 031 - 15.70 0.041 and the rooms per property (RM) show a
significant positive effect towards the
e LAND AREA shows a negligible negative impact median value prices
e CBD DIST & NEAREST STN DIST shows a small negative | * The nitrous oxide concentrations (NOX) and
% impact the proportion of non-retail business acres
e NEAREST SCH DIST shows a significant positive impact (INDUS) show a lack of effect on the median
e Adjusted R-squared value is 0.241 value prices
THE MANSKI| MODEL
Variable Estimate Standard Error t-value -value
P
DIRECT INDIRECT TOTAL
CBD DIST | 0.018167695 -0.05751353 -0.03934583 (SE)
NEAREST STN DIST | -0.016319871 -0.07852185 -0.09484173 (Intercept) -14.6152 2 7742 _5.2682 2.0972¢~7
LAND AREA |  -0.007572612 -0.02167637 -0.02924898
NEAREST SCH DIST =~ -6.113631294 358.42221512 352.30858383 CRIM -0.1073 0.0284 -3.7711 1.8315¢~*
Mean Housing Price - @ CBD_DIST, NEAREST_STN_DIST & LAND_AREA show a CHAS 1.8942 0.8897 2.1290 0.0338
8?;"’[};’:’:21000 negative and low effect on the price per square meter RM 6.9288 0.3320 20.8720 0.0000e°
——— e NEAREST_SCH_DIST shows a significant positive effect 4
@ 3.000 to 4,000 on the price per square meter AGE -0.0414 0.0121 -3.4088 7.0827e
- T e The Manski model proves to be a poor fit for the data INDUS _0.1012 0.0604 _-1.6749 0.0946
NOX -5.1642 3.8309 -1.3481 0.1783
The Boston house price data, which is used as benchmark data in this work, is a classic spatial data set and is Bivand, R. (2022). R packages for analyzing spatial data: A comparative case study with areal
comprehensive. Hence, suitable spatial models can be employed to proceed with spatial predictive modelling. data. Geographical Analysis, 54(3), 488-518. Retrieved from 10.11T1/gean.12319
However, the Perth house price data needs to be addressed further by implementing more spatial variables to Des Rosiers, F., Theriault, M. and Villineuve, P., (2000). Sorting out Access and Neighbourhood
proceed with spatial modelling. Future studies involving more variables that project strong spatial autocorrelation Factors in Hedonic Price Modelling. Journal of Property Investment & Finance, 18(3): 291-315.
i . ) o ) o i i Retrieved from 10.1108/14635780010338245
can be investigated to improve the existing spatial predictive model accuracy. It is also of interest to study the
effects of various spatial weight matrices to quantify the spatial relationships that exist among the features in the Pebesma, E, & Bivand, R. (2023). Spatial Data Science: With Applications in R. Chapman and
dataset of interest Hall/CRC. Retreived from 10.1201/9780429459016.
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Fractal Dimension of
Klang River Network: A
Box-counting Method

Introduction

¢ Fractal dimension was coined by Benoit B.

Problem Statement:

Name: Ikhwan bin Mohd Nizam
Matric No.: U2001245
Supervisor: Dr. Shahizat bin Amir & Dr. Mohd. Zahurin bin Mohamed Kamali

Study Area

Gombak

Klang River and its network
system in Klang Valley region
consist of Klang, Petaling, Ulu
Langat, Gombak District and
Wilayah Persekutuan Kuala
Lumpur

WP. Kuala Lumpur g‘

Ulu Langat

Objectives:

Mandelbrot in 1975.
¢ The dimension is not integer, but rather a fraction
unlike Euclidean dimensions.
e Fractals are geometry figures & their
characteristics:
o Self similar
o Recursive

« Afractal dimension is a ratio providing a statistical providing
index of complexity.
Methodology
-D _ logN(L)
D= —2—" 2
N(L) L (1) fog /L (2)
where:

» D represents the fractal dimension.

o N(L) is the number of grid boxes of side length L needed to
cover the network.

o Lis the grid boxes with side length L.

N(L1) =8,
N(L2) =11,
N(L3) =101

L1 L2 Ls

This power law corresponds to a linear relationship of Equation 1on
a logarithmic scale. A log-log plot of N(L) against 1/L is constructed
with the plotted points, and the slope of the resulting line gives an

estimate of the fractal dimension, D by fitting these points with
linear regression using Equation 2.

+ R @ python
GIS & Spatial Analysis Mathematical Computation

Obtain high

A Cro Superimposed N
resolution Add the P p P Obtain the
. ] the with grid of
spatial river number of
network square shapes N Calculate
map of network o P grid boxes
river ™Y shapefile within varies in sizes needed to » Fractal
p Klang with Vector Dimension

network
from Pusat
Geospatial

Negara

as a layer
in QGIS
3.34

cover the
network using

Python.

Valley

processing
Area toolboxin
only. QGIsS.

using R

Conclusion

The box-counting method effectively measures the complexity of the Klang River network, revealing
a fractal dimension of 1.6114. This high degree of branching and connectivity is crucial for hydrological
and ecological processes. Limited data accessibility highlights the need for more comprehensive
studies and institutional support. The project also demonstrates the utility of GIS in enhancing the
box-counting method, facilitating efficient and accurate spatial analysis. Further studies on
Malaysian river systems are recommended to understand the impacts of urbanization. Policymakers

The Klang River network in the Klang Valley region
lacks a comprehensive assessment of its fractal
properties. Understanding its fractal dimension is
crucial for insights into its structure, evolution, and
behaviour. This study aims to evaluate the strengths o
and limitations of using the box-counting method

integrated with GIS to estimate the fractal dimension,

valuable

e Understanding the fractal complexity in
Klang River network in Klang Valley area
using spatial analysis and mathematical
computation.

Investigate the applicability of
Geographic Information System (GIS)
with the box counting method for
estimating the fractal dimension of Klang

insights for environmental

management, flood control, and urban planning.

River network.

Results and Discussion

Grid size, L (km) N@D) Log (LL) Log (N(L) o

025 23580 0.6021 43725

—  R-squared: 0.9934 )
Estimated fractal dimension (D): 1.6114

0.50 7436 03010 38713

1.00 2148 0 3.3320

2.00 622 -0.3010 27938

4.00 181 -0.6021 22577

Log(Box Count)

6.00 93 -0.7782 1.9685

8.00 56 -0.9031 1.7482 .

12.00 34 -1.0792 1.5315

16.00 19 -1.2041 1.2788 *

32.00 9 -1.5051 0.9542

64.00 4 -1.8062 0.6021

Log(Box Size)

Interpretation of Results:

The table lists grid sizes and corresponding box counts, showing an inverse
relationship.

The log-log plot of box size and box count indicates a power-law distribution,
characteristic of fractals.

The fractal dimension of 16114 suggests a complex river network, impacting
hydrological processes like water flow and flood dynamics.

Box Counting Method Using GIS:

QGIS automates the box-counting process, ensuring accuracy and efficiency.
This method helps manage large datasets and provides insights into river network
complexity.

Urban River Network and Impact of Urbanization:

Urbanization can simplify river networks, reducing their capacity to manage heavy
rainfall, as observed in the Taihu Region, China.

Understanding the Klang Valley river network's fractal properties is vital for effective
water management and flood mitigation, particularly after the severe December
2021 floods.

Sustainable urban planning should balance development with ecological
preservation, using advanced technologies and community engagement.
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should use GIS technologies for better river conservation, flood management, and urban planning.
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