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1. Abstract and Objectives

Introducing centrality measures, a way to rank nodes, plus how and why to construct a convex
combination of them. We mainly put our focus on convex combinations of two centrality
measures. We introduce some well-known centrality measures and discuss what aspects they
individually emphasise to rank nodes of a graph. We will see that different centrality measures
provide a variety of valuable insights into node importance, and forming a combination of multiple
centrality measures is necessary to capture a graph’s whole structure. Objectives To determine a
tµ such that

it maximise the correlation value between c0 and ctµ, and between c1 and ctµ
it induces the most number of ranks (regular points)

ctµ mimics both c0 and c1 better than c0 and c1 do to each other
(min{τb(c0, ctµ), τb(c1, ctµ)} ≥ τb(c0, c1))

Definition 1: Centrality measures
A centrality measure of a graph G is a function c : V 7→ [0,∞) with the following properties:

1 If G is a star with centre u, then c(u) > c(v) for all nodes v ∈ V − {u}.
2 If G ∼= H with bijection θ : V (G) → V (H), then c(v) = c(θ(v)) for all nodes v ∈ V . [1]

2. Well-known Centralities

1 Degree centrality

2 Closeness centrality

3 Harmonic centrality

4 Betweenness centrality

5 Eigenvector centrality

6 Katz centrality

7 PageRank centrality

Example: Different centrality measures give different rankings

v1v2

v3

v4

v5

v6

v7
v8

v9v10

Figure 1. A custom drawn graph

Rank Degree Closeness Harmonic Betweenness Eigenvector Katz PageRank
1 v2, v6, v8 v6 v6 v6 v6 v6 v8
2 v3, v5 v3, v5, v8 v8 v8 v2 v2 v2
3 v1, v4, v7, v9, v10 v7 v2, v3, v5 v3, v5 v3, v5 v8 v6
4 - v2 v7 v2 v8 v3, v5 v3, v5
5 - v1, v4 v1, v4 v1, v4, v7, v9, v10 v7 v7 v9, v10
6 - v9, v10 v9, v10 - v1, v4 v1, v4 v7
7 - - - - v9, v10 v9, v10 v1, v4

Table 1. Ranks of nodes of Figure 1 by degree, closeness, harmonic,
betweenness, eigenvector, Katz and PageRank centrality.

Different centrality measures yield significantly different rankings of nodes, for this reason, a single
centrality measure may not be enough to capture the whole network structure and the importance
of nodes. Therefore, it is crucial to take into account the view of multiple centrality measures
simultaneously, by taking the combination of them when ranking nodes. [2]

3. Convex Combinations of Centrality Measures

Given centrality measures c0 and c1 and a real number t, we define the functions tc0 and c0+ c1 by
setting

(tc0)(v) = tc0(v) and (c0 + c1)(v) = c0(v) + c1(v)

for all v ∈ V .

Definition 2: Convex combinations of centrality measures
Given centrality measures c0, c1, ..., cn and non-negative real numbers t0, t1, ..., tn such that∑n

i=0 ti = 1, we define the convex combination ct as follows:

ct = t0c0 + t1c1 + ... + tncn =
n∑

i=0

tici. (1)

Theorem 3:
Let c0, c1, ..., cn be centrality measures. For any (t0, t1, ..., tn) ∈ ∆n, the convex combination ct is
a centrality measure. [1]

Each score of node assigned by individual ci contributes some weightage to ct, which is determined
by the value ti. One way to determine the value of each ti is by making sure ct truly represents all
individual ci’s, that is, the correlation between ct and each individual ci’s are as large as possible.

4. Correlation Methods

Definition 4: Kendall’s tau-b
Given normalized centrality measures c0 and c1, the Kendall’s tau-b of the two ranks induced by
c0 and c1 on a graph G on n vertices is

τb(c0, c1) =
mC −mD√

(m− T0)(m− T1)
, (2)

where m = #pairs of distinct nodes in G = n(n−1)
2 , mC = #concordant pairs in G with respect to

c0 and c1, mD = #discordant pairs in G with respect to c0 and c1, T0 = #pairs of distinct nodes
in G tied on c0, T1 = #pairs of distinct nodes in G tied on c1.

Definition 5: Pearson’s r
Given normalized centrality measures c0 and c1, the Pearson’s r between the two ranks induced by
c0 and c1 on a graph G on n vertices is

r(c0, c1) =
n(

∑n
i=1 c0(vi)c1(vi))− (

∑n
i=1 c0(vi))(

∑n
i=1 c1(vi))√

[n
∑n

i=1(c0(vi))
2 − (

∑n
i=1 c0(vi))

2][n
∑n

i=1(c1(vi))
2 − (

∑n
i=1 c1(vi))

2]
. (3)

7. Conclusion

In conclusion, we see different centralities emphasise different aspects. To construct a convex
combination, we need it to represent all ci’s, where we used correlation methods. Finally, we
demonstrated how to use Kendall’s tau-b and Pearson’s r to find the optimal t for ct.

5. Convex Combinations of Two Centrality Measures

A convex combination of two centrality measures, ct = (1− t)c0 + tc1, c0, c1 spanned by
∆1 = {(1− t, t) ∈ |t ∈ [0, 1]}

Lemma 6:
If any pair of distinct nodes of G are concordant with respect to or tied on both c0 and c1, then
ct will preserve this property for all t ∈ [0, 1]. [1]

Lemma 7:
Any pair of distinct nodes of G are either tied on ct∗ for at most one t∗ ∈ [0, 1] or tied on ct for
all t ∈ [0, 1]. [1]

Definition 8: Regular points
A point t∗ ∈ [0, 1] is a critical point if there exist distinct nodes u and v of G that are ranked
equally by ct∗ but u and v are either not tied on c0 nor on c1. [1]

Definition 9: Critical points
A point t∗ ∈ [0, 1] is a critical point if there exist distinct nodes u and v of G that are ranked
equally by ct∗ but u and v are either not tied on c0 nor on c1. [1]

Lemma 10:
For any pair of distinct nodes of G that is neither concordant wrt nor tied on both c0 and c1, there
exists a unique critical point t∗ ∈ [0, 1]. Furthermore, for any r, s ∈ [0, 1], the pair of nodes are
concordant with respect to cr and cs if and only if either r, s ∈ [0, t∗) or r, s ∈ (t∗, 1]. [1]

Lemma 11:
The ranking of nodes of a graph G induced by ct, as t varies in [0, 1], changes only finitely many
times and the number of times the ranking changes is

2|T ∗| − |T ∗ ∩ {0, 1}|, (4)

where T ∗ is the set of critical points t∗ ∈ [0, 1] and |T ∗| is the cardinality of the set T ∗. [1]

Lemma 12:
For a regular point t, the ranking of nodes of a graph G induced by ct is insensitive to sufficiently
small variation in t. Particularly, for any two consecutive critical points t∗i and t∗j , where t∗i < t∗j ,
the ranking induced by ct stays the same as t varies in t ∈ (t∗i , t

∗
j) ∩ [0, 1]. [1]

6. Optimizing Convex Combinations of Two Centrality Measures

Theorem 13:
Using Kendall’s tau-b, there is always a tb ∈ [0, 1] such that tb is a regular point and ctb mimics
both c0 and c1 better than c0 and c1 do to each other. [1]

Via minimizing the objective function g(t; c0, c1) = (1− τb(c0, ct))
2 + (1− τb(c1, ct))

2

By Lemma 11, each τb(c0, ct) and τb(c1, ct) changes its values finitely many times as t varies in
[0, 1]. By Lemma 6 and 10, changes in values occur only when it passes through a critical point.

Therefore together with the Theorem 13, it is feasible to determine tb and hence compute the
optimum ctb by minimizing the objective function g(t; c0, c1) with regular points.

Theorem 14:
Using Pearson’s r, there is always a tr ∈ [0, 1] such that ctr mimics both c0 and c1 better than c0
and c1 do to each other.

Via minimizing the objective function h(t; c0, c1) = (1− r(c0, ct))
2 + (1− r(c1, ct))

2

With similar sayings as before, by Lemma 6, 10, 11 and Theorem 14, it is feasible to determine
tr and hence compute the optimum ctr by minimizing the objective function h(t; c0, c1).

Example: ctb and ctr splits ranks of nodes better

Figure 2. g(t; c0, c1) for
Figure 1

Figure 3. h(t; c0, c1) for
Figure 1

Rank c0 (Closeness) c1 (Betweenness) ctr ctb
1 v6 v6 v6 v6
2 v3, v5, v8 v8 v8 v8
3 v7 v3, v5 v3, v5 v3, v5
4 v2 v2 v2 v2
5 v1, v4 v1, v4, v7, v9, v10 v7 v7
6 v9, v10 - v1, v4 v1, v4
7 - - v9, v10 v9, v10

Table 2. Ranking of nodes by c0, c1, ctb, ctr on
Figure 1

When c0, c1 = closeness, betweenness centrality,

g(t; c0, c1) minimized at tb ≈ 0.1959, h(t; c0, c1) minimized at tr ≈ 0.3013

ctb = 0.8041c0 + 0.1959c1, ctr = 0.6987c0 + 0.3013c1
min{τb(c0, ctb) ≈ 0.9271, τb(c1, ctb) ≈ 0.8997} ≥ τb(c0, c1) ≈ 0.8315,
min{r(c0, ctb) ≈ 0.9795, r(c1, ctb) ≈ 0.9795} ≥ r(c0, c1) ≈ 0.9188
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A S S E S S M E N T S  O F  M A C H I N E  L E A R N I N G
R E G R E S S I O N  M O D E L S  F O R  P R E D I C T I N G
T H E  D E V E L O P M E N T  O F  T H E  M I D F A C E  I N
S Y N D R O M I C  C R A N I O S Y N O S T O S I S  

Analysis Methodology
Least Squares Linear Regression
Least squares linear regression minimizes the sum of squared errors to fit a line through the data, simplifying the analysis when
the variables have an almost linear relationship.
Support Vector Machine Regression
SVM regression uses kernel functions to map input features to higher dimensional Spaces, thus achieving linear separation and
suitable for handling complex interactions
Random Forest
The random forest builds multiple decision trees and averages their predictions to reduce errors and improve confidence. Its
efficient handling of nonlinear relationships and complex interactions makes it suitable for predicting high-precision midplane
measurements.

Support Vector Machine (SVM)regression Result

LEAST SQUARES LINEAR REGRESSION ACTUAL VS
PREDICTED VALUES FOR ZMS_ZMSR

LEAST SQUARES LINEAR REGRESSION RESIDUALS
FOR ZMS_ZMSR

At the point where the X-axis is close to 40, the
predicted value is significantly lower than the actual

value, and the positive residual is larger in the
corresponding residual plot.

For points where the X-axis is close to 60, the predicted
value is significantly higher than the actual value, and

the negative residual is larger in the corresponding
residual plot.The residual error in the middle region is
small,indicating that the model is more accurate in this

interval.

The residual distribution is relatively random,
and there is no obvious systematic bias,
indicating that the error of the model is
random in most of the predicted values.

Large residuals appear at the extremes of the
predicted values (near 45 and 60), suggesting
that the model has a large error problem in

these intervals.

It performed well in predicting the
"ZMs-ZMsR" variable with an MSE of

6.484 and an R² of 0.906, showing
strong explanatory power and a small

prediction error.
However, it does not perform well on

extreme values, and the residual is
large.

It performed well in predicting the "ZMs-ZMsR"
variable, with MSE of 6.698 and R² of 0.877,
showing good predictive performance and

explanatory power.
The prediction of extreme values is stable and

the residual is small.
It also performs well on other variables and is
suitable for data with complex and non-linear

relationships.

HaoRan Xin S2106630 U N I V E R S I T Y  M A L A Y A  

Introduction
Syndromic Craniosynostosis is a congenital condition in which the sutures of the skull fuse prematurely, resulting in abnormal

head and face shape. In order to develop a targeted personalized treatment plan, the prediction of facial growth patterns is
particularly important. By examining the accuracy of a specific regression model for the face measurement, it provides the basis
for personalized and precise treatment programs.This study aimed to determine the effectiveness of three regression models-

least square linear regression, support vector machine (SVM) regression, and random forest-in predicting the middle facial area of
Syndromic Craniosynostosis. Identify the most reliable models for high-precision prediction in clinical applications.

Least Squares Linear Regression Results

Random Forest Results

ZMs-ZMsR and ANS-PNS are the most suitable predictors because they have high R² values and relatively low MSE values, indicating that
the model has strong explanatory power for these variables and small prediction errors.

These formulas are derived by linear regression model, they describe the linear influence of different independent variables
on the target variable, and can be used to predict the corresponding target variable value.

The mean square error (MSE) values of all variables are relatively high, which indicates that the SVM model
has a large prediction error on these variables.

All variables had low r-squared (R²) values, indicating that the SVM model had limited ability to explain these
variables.

These conditions indicate that the model cannot effectively predict these mid-face measurement
parameters in the current

The outcome of Random Forest Regression indicates the sufficiently good seemingly in each
dependent variable, with the range of R-squared (R²) values fluctuation from 0.836 to 0.992.

The N-ANS factor is depicted as bearing a value of 0.992 at R²
, which could mean that the

model explains 0.992. And the N-ANS variable MSE also comes out low in correlation

Random Forest Actual vs Predicted Values for ZMs_ZMsR Random Forest Residuals for ZMs_ZMsR

In the least square linear regression model, ZMs-
ZMsR is chosen as the best predictor. In order to
compare the performance of different models on

the same variable, we also use the ZMs-ZMsR
variable for analysis in the random forest

model.Although not as good as N-ANS, it still has
higher explanatory power and lower prediction

error.The random forest model shows high prediction
accuracy when predicting the variable "ZMs_ZMsR".Most of the

data points are close to the ideal 1:1 relationship line, indicating
that the random forest model can fit the data well and provide

accurate predictions.

Most of the residials are between -0.5 and 1.5,
showing that the random forest model's

predictions of the "ZMs_ZMsR" variable are
very accurate with very little error.

While there are some positive and negative
residuals near the predicted values of 40, 48,

and 54, the values are very small, showing that
the model's prediction error in these intervals

is also small.The random forest model performs well in
predicting the "ZMs_ZMsR" variable, with small

residual values, relatively random error
distribution, and no obvious systematic bias.

Summary and Conclusion 
Least square linear

regression
Support vector machine

regression (SVM)

It performed poorly in predicting the
"ZMs-ZMsR" variable, with MSE of 56.512

and R² of only 0.178, showing large
prediction error and weak explanatory

power.
It performs poorly on all variables and

may require further tuning and
optimization.

Random forest regression

The prediction of extreme value by Random forest is stable and the
residual is small. It also performed well on other variables. And Random
forest model hasn obvious advantages in dealing with data complexity and
multicollinearity, and is the best predictive model among the three
models. Its the best choice for predicting facial development in patients
with Syndromic Craniosynostosis

Future Research Directions

1. For future research, the parameters of the random forest model can be further optimized and
more relevant variables can be included to further improve the prediction accuracy.
2. Removing features with high VIF values or dimensionality reduction through principal
component analysis (PCA) can reduce the influence of multicollinearity on the model and improve
the stability and prediction accuracy of the model.
3. Use regularization methods such as Ridge regression and Lasso regression to introduce penalty
terms and reduce multicollinearity effects
4. Hyperparameter adjustment of SVM , such as adjusting regularization parameters, can
significantly improve the model's prediction performance.
5. Data expansion: Expand and enrich the data set by collecting more patient data, especially
patient data of different age groups and different disease severity.
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Results

ConclusionDiscussion
We evaluated the Least Squares Linear Regression, Ridge
Regression and Lasso Regression, revealed large differences
in the predictive power of facial measurements in patients
with Sydromic Craniosynostosis. The Lasso Regression,
which has unique features for handling multicollinearity
problems and variable selection, has an R² of 0.97 for N-
ANS, suggesting that the model can explain 97% of the
variance. Under the least squares model, VIF values can
indicate problems of high multicollinearity.  Processing
multicollinearity with Ridge Regression and Lasso
Regression can reduce the effect of insignificant predictors,
thereby improving the reliability of the model.

Methodology
Data Description
Multicollinearity Check (VIF Test)
Normality Test (Shapiro-Wilk Test)
Analysis Methodology
(1) Least Squares Linear Regression
(2) Ridge Regression
(3) Lasso Regression

Multicollinearity is a common problem in regression
analysis where the predictors are highly correlated. It
was to detect a degree of multicollinearity which is
the correlation between independent variables.
We will perform the Shapiro-Wilk Test to check their
normality. This determines whether the variable is
suitable for linear regression analysis. The Shapiro-
Wilk test is used to test the residuals of each model
and to test the normality of the distribution, which is
the basic assumption of linear regression analysis

Objective
The primary objective of this study is to
compare three regression models—Least
squares linear Regression, Ridge Regression,
and Lasso regression—for predicting midface
region measurements based on cranial base
parameters.

Introduction
Syndromic craniosynostosis is a group of rare genetic disorders characterized
by the premature fusion of one or more of the cranial sutures, the joints
between the bones of the skull. This premature fusion can lead to an
abnormal head shape and, in some cases, associated physical and cognitive
impairments.Treatment for syndromic craniosynostosis typically involves a
multidisciplinary approach, with input from neurosurgeons, craniofacial
surgeons, geneticists, and other specialists.  The primary goal is to allow for
normal brain growth and development by surgically correcting the abnormal
skull shape.  Additional therapies may address other medical issues that
arise.

Predicting Midface
Development in Syndromic
Craniosynostosis Using
Penalized Regression Models in
Machine Learning

Authors
WANG JIALE

Affiliations
 Institute of Mathematical Science, University of Malaya,
Kuala Lumpur, Malaysia

.
The dataset for this study
consisted of 24 patients, each
representing a patient diagnosed
with sydromic craniosynostosis.
The response variables include
'ZMs-ZMsR', 'N-ANS', 'ANS-PNS',
'ZF-ZFR', 'ZMs-ZTi', likely derived
from anatomical or physiological
measurements, used for
assessing conditions or
anatomical relationships.

Least Squares Linear Regression Ridge Regression Lasso Regression

The mean square error (MSE) value represents
the mean square error between the estimate and
the actual value. The greater the MSE value, the
greater the prediction error. In this analysis, the
mean square error value ranges from 5.81 to
10.27, and there is a significant difference in
prediction accuracy between different variables.
The R Squared value represents the proportion of
the difference in the dependent variable that
can be predicted by the independent variable.
The R Squared value is between 0.75 and 0.94.

The Lasso Regression results show that each
dependent variable is superficially good
enough, and the R Squared value fluctuates
from 0.836 to 0.992. The N-ANS factor has a
value of 0.97 at R Squared, which probably
means that the model explains 97%. The
correlation of the ZMs-ZMsR variable is also
low (R²=0.93). Although this value is reduced
from the original 100%, the model still
describes the proposed phenomenon fairly
well.

The Mean Squared Error (MSE) for the predictions is
approximately 6.78.  
MSE is a measure of the average squared difference
between the estimated values and the actual value.
The R-squared (R²) value is about 0.856.  
This value represents the proportion of the variance
for the dependent variable that's explained by the
independent variables in the model.  An R² value
closer to 1 indicates a model that explains a large
portion of the variance.

The primary objective of this study was to compare the
performance of three regression models—Least Squares
Linear Regression, Ridge Regression, and Lasso Regression—in
predicting midface region measurements in patients with
syndromic craniosynostosis.  Our analysis demonstrates that
the choice of regression model significantly impacts the
accuracy and reliability of predictions, with Lasso Regression
showing the most promising results. The lowest MSE and
highest R-squared values obtained with Lasso Regression
indicate its superior capability in predicting midface
development in patients with syndromic craniosynostosis.
This makes it an invaluable tool for clinicians involved in
treatment planning and intervention strategies.
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As shown in Figure 1, we can see a clear trend of increasing Rickettsiosis cases over
the years from May 2016 to December 2019.
Additionally, Figure 2 shows the distribution of cases by state. From this pie chart, we

can see that a significant proportion of cases are concentrated in East Malaysia,
particularly in the states of Sabah and Sarawak.

Rickettsia are small, obligately intracellular Gram-
negative bacilli. They are distributed among
various hematophagous arthropod vectors and
cause Rickettsioses，an acute undifferentiated
febrile illness, and are often accompanied by
headache, myalgias, and malaise.

The ACF plot indicates that most residuals

fall within the confidence intervals,

suggesting no autocorrelation.

The histogram reveals that the residuals

are approximately normally distributed but
exhibit a slight skew and a few extreme

values, indicating the presence of outliers.

The residual diagnostics suggest that the

SARIMA(0,1,1)(0,1,1)[12] model provides a

reasonable fit to the data.

The radar plot shows the monthly
distribution of cases from 2016 to 2019.
Seasonality Detection: The plot indicates
a recurring peak in March across multiple
years, suggesting the presence of
seasonal patterns in the data. Given the
observed seasonality, we could train a
SARIMA model to capture these seasonal
effects for more accurate forecasting.

Cases of Rickettsiosis in Malaysia

By: WANG CAN S2037359

Forecasting Ricketsiosis Case Numbers in Malaysia: 

Analysis of Count Time Series Following Generalized Linear Model

What are Rickettsia and Rickettsiosis?

Objectives Of Project

What is SARIMA Model?

Data

Seasonal Check

Fit SARIMA Model

Residual Diagnostics (SARIMA)

Forecast Value Vs. Actual Value (SARIMA)

The monthly cases of Rickettsiosis form a count time series with low counts, ranging from 2 to 27. As noted by
Stephan (2016), such series are not well-suited for methods designed for continuous distributions. Traditional
SARIMA methods, which assume a continuous sample space, are therefore inappropriate for this type of data.
Given the absence of a generalized approach, we decided to investigate a specific model for the data. Our
analysis focuses on the Generalized Linear Model (GLM), which is particularly effective for this purpose, and we
compared its performance against SARIMA models.

Why would we want to develop a GLM?

GLM

Fit GLM Model
Capture short-term serial dependencies through
a first-order autoregressive term and annual
seasonality through a twelfth-order
autoregressive term, both specified in the model
parameter list element named ‘past_obs’.
Due to the more severe infections in East
Malaysia, we include the number of cases in East
Malaysia as a covariate. For distribution, we
chose the negative binomial. Due to our data
being discrete and not satisfying the Poisson
distribution assumption (variance equals mean).

Residual Diagnostics (GLM)

The ACF plot helps identify any correlations between

residuals over different time lags. All autocorrelations lie

within the 95% confidence bands (blue dashed lines),

suggesting that the residuals do not exhibit significant

autocorrelation. It shows that does not exhibit any
autocorrelation or seasonality which has not been taken into

account by the model. This is a desirable property indicating a

good model fit.

Forecast Value Vs. Actual Value (SARIMA)

Comparison

Conclusions



Methicillin-resistant Staphylococcus aureus (MRSA) bacterium is a significant hospital-
acquired pathogen. It resists many antibiotics that treat regular staph infections, posing 
a serious public health risk . Staphylococcus skin infection usually begin as swollen, 
painful red bumps that may resemble pimples or spider bites. Sometimes the bacteria 
stay on the skin, but they can also go deeper and cause serious infections in bones, 
joints, surgical wounds, the bloodstream, heart valves, and lungs.

Data Background
In this research , we study the monthly 
cases of MRSA infections in two major 
hospitals in Klang Valley from February 
2020 to March 2022.The trend in the 
number of cases over these 26 months, 
as shown in figure 2, is typically between 
7 to 36.
The monthly number of MRSA infections 
is a count time series . The variance of  
our data is 59.26, exceeds the mean, 
20.15, indicating overdispersion.

Motivation for the Study

Parameters P=1,Q=1 in this model means that the model uses 1 lagged data and one 
prediction error to make predictions.
d=2: minimum number of differencing needed to make the series stationary.

Similar to ARIMA, the parameters P=1,Q=1 in this model means that the model 
uses 1 lagged data and one prediction error to make predictionsThe selected 
distribution is Negative Binomial, it means that the model can be applied to 
overdispersion data.

The monthly infections number of MRSA is a typically count time series 
with low counts. According to Stephan (2016),This kind series can no longer 
be dealt with using the approximative methods that are appropriate for 
continuous distributions. Given this requirement, it is clear that traditional 
ARIMA methods are inappropriate as they assume a continuous sample 
space for the data. In the absence of a generalized methodology, we are 
interested in considering some specific classes of models and noting the 
suitability of particular models for the count data. As a result, the 
Generalized Linear Model (GLM), which is the most common model for 
analyzing count data, became the model we wanted to analyze and 
compare with ARIMA.

Introduction

Result and Discussion

we chose the difference order d=2, 

the p-value is less than 0.05, means 

that the series is stationary.

ARIMA

(p=1,d=2,q=1)

Objective 01

Negative binomial with

p=1,q=1

Conclusion

Methodology

Objective

Comparative Analysis of ARIMA 

Model and Generalized Linear 

Model for Predicting MRSA 

Infection Cases in Malaysia
WANG CUI

S2100923





A Review on General Relativity and its
Application to Cosmology
Sia Chen Yi
Universiti Malaya, Institut Sains Matematik, Malaysia

Abstract
General relativity is a crucial topic that serves as a cornerstone in

the revolution of our understanding of spacetime and gravity. Concepts
such as dark matter, dark energy, and black holes are fundamentally
based on the principles of general relativity.

Objectives
The main goals for our research are:

• Explain the derivation of Einstein’s Field Equation in general
relativity;

• Apply Einstein’s Field Equation to construct some basic cos-
mological models;

• Briefly explain the origin of cosmological constant and the
notion of dark energy.

Historical Overview
The story behind the Albert Einstein’s work on general relativ-
ity:

• In 1905, Albert Einstein published his paper entitled ”On the
Electrodynamics of Moving Bodies”, which introduced his
theory of special relativity;

• Albert Einstein tried to seek for the natural extension of spe-
cial relativity which included the effects of gravity;

• He comes out the Einstein’s Equivalence Principle and real-
ized that the space is curved;

• He sought out his classmate at Zurich’s University, Marcel
Grossmann to teach him tensor calculus and Riemann geom-
etry, which describe the movement of objects in space and
time and also describe the dynamic frame of reference;

• Early development of tensor calculus are done by Grego-
rio Ricci-Curbastro, Tulio Levi-Civita, and Professor Luigi
Bianchi;

• Einstein’s student David Hilbert also attempted to derive Ein-
stein’s Field Equation before Einstein. In the end, both of
them managed to derive the same equation by using different
methods by November 1915;

• Einstein derived the equation by realizing Second Bianchi
Identity is proportional to Noether’s theorem. While Hilbert
derived the equation using Lagrangian approach.

Tensor Calculus
• Covariant Tensor,

Ai1i2...im = Āα1α2...αm

∂x̄α1

∂xi1
∂x̄α2

∂xi2
...
∂x̄αm

∂xim
. (1)

• Contravariant Tensor,

Aj1j2...jn = Āβ1β2...βn∂x
j1

∂x̄β1

∂xj2

∂x̄β2
...
∂xjn

∂x̄βn
. (2)

• Connection,

Γhij = xhλ(x̄
λ
ji + Γ̄λµνx̄

µ
ix̄

ν
j). (3)

• Christoffel Symbol,

Γ̊λµν =
1

2
gλα(∂νgαµ + ∂µgαν − ∂αgµν). (4)

• Covariant Derivative for Covariant Vector,

∇jAi = ∂jAi − Γ̊lijAl. (5)

• Covariant Derivative for Contravariant Vector,

∇jA
i = ∂jA

i + Γ̊iljA
l. (6)

• Riemann-Christoffel Curvature Tensor,

Rλ
µαν = ∂αΓ̊

λ
µν − ∂νΓ̊

λ
µα + Γ̊λσαΓ̊

σ
µν − Γ̊λσνΓ̊

σ
µα. (7)

• Ricci Tensor,

Rµν = Rα
µαν, (8)

= Rβµανg
αβ. (9)

• Ricci Scalar,

R = Rν
ν, (10)

= Rµνg
µν. (11)

Einstein’s Field Equation

Einstein’s Approach
From Bianchi Second Identity,

∇µ(Rµν −
1

2
gµνR) = 0, (12)

Gµν = Rµν − 1

2
gµνR. (13)

Since ∇µG
µν = 0 and we assume ∇µT

µν = 0,

Rµν −
1

2
gµνR = κTµν. (14)

After we solving for κ,

Rµν −
1

2
gµνR = 8πGTµν. (15)

Hilbert’s Approach
Our total action gravity is as follows:

S = γSg + κSm, (16)

S =

∫
L(Φi,∇µΦ

i)dnx. (17)

We can separate Sg into three parts:

δSg = δS1 + δS2 + δS3, (18)

δS1 =

∫
dnx

√
−ggµνδRµν, (19)

δS2 =

∫
dnx

√
−gRµνδg

µν, (20)

δS3 =

∫
dnx(− R

2
√
−g

δg

δgµν
)δgµν. (21)

δS1 will equals to 0 by Stokes’ Theorem. After that we will get
the following:

δSg =

∫
([Rµν −

1

2
Rgµν]

√
−gδgµν)dnx. (22)

After we get δSg, then we substitute it into (16) to get Einstein’s
Field Equation,

Rµν −
1

2
Rgµν = 8πGTµν. (23)

Cosmological Constant
We take S = γ(Sg + Sp) + κSm,

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν. (24)

Cosmos with only matter and radiation
• Ricci scalar of FLRW Metrics,

R = 6[
ä

a
+ (

ȧ

a
)2 +

κ

a2
]. (25)

• Friedmann Equation,

(
ȧ

a
)2 +

κ

a2
=

8πGρ

3
+
Λ

3
. (26)

• Acceleration Equation,

ä

a
=

Λ

3
− 4πG

3
(ρ + 3p). (27)

• Energy Conservation Equation,

ρ̇ = −3
ȧ

a
(ρ + p). (28)

By using Energy Conservation Equation, we do able to ex-
press energy density in terms of ω.

ρ = ρ0(
a0
a
)3(1+ω). (29)

• Einstein-de Sitter Universe,

a(t) = a0(
t

t0
)
2
3, (30)

t0 =
2

3H0
. (31)

• Radiation Dominated Universe,

a(t) = a0(
t

t0
)
1
2, (32)

t0 =
1

2H0
. (33)

The Universe with Cosmological Constant
• Einstein’s Static Universe,

a0 =
1

Λ
. (34)

• De Sitter Universe with κ = −1,

a(t) =

√
3

Λ
sinh(

√
Λ

3
t). (35)

• De Sitter Universe with κ = 0,

a(t) = a0e

√
Λ
3 t. (36)

• De Sitter Universe with κ = 1,

a(t) =

√
3

Λ
cosh(

√
Λ

3
t). (37)

Now we are looking at some tools which help us to relate the
non-observable parameters with observable parameters.

• Redshift,

a(te) =
1

1 + z
. (38)

• Instantaneous Physical Distance,

dp(t) = a(t)

∫ r

0

dr√
1− κr2

. (39)

• Luminosity Distance Formula,

dL = (1 + z)a(t0)r. (40)

Conclusions
In conclusion, we have successfully derived Einstein’s Field
Equations by employing the Einstein-Hilbert action, a pivotal
step in our journey through the realms of theoretical physics.
These equations have served as the foundation for deriving
several other fundamental equations, including the Friedmann
Equation, Acceleration Equation, and Energy Conservation
Equation, among others.

Furthermore, our exploration extended to various cosmological
solutions within the framework of general relativity. We delved
into the origin of the cosmological constant in Einstein’s Field
Equations and its reinterpretation as dark energy, based on em-
pirical evidence such as supernova measurements. Additionally,
we discussed how cosmological models are verified through the
measurement of key cosmological parameters, redshift, instan-
taneous physical distance, and also luminosity distance formula
on the intricate workings of our universe.
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Malaysia RStudio

STUDY AREA AND SOFTWARE

CHI-
SQUARE

TEST

MULTICOLLINEARITY

Methicillin-Resistant Staphylococcus aureus
(MRSA) infection originates from a group of

Staphylococcus bacteria that has become
resistant to many antibiotics typically used to
treat standard Staphylococcus infections. Most

MRSA infections occur in people who have been
hospitalized or have had contact with

healthcare settings such as hospitals and
dialysis centers, and are known as hospital-

acquired MRSA (HA-MRSA). MRSA is also found in
community clusters, such as among child care
workers, athletes, and people who live in close
proximity. This form is known as community-

acquired MRSA (CA-MRSA).

Examined the association between MRSA type (HA or CA) and the
presence of 16 virulence genes.

The contingency table shows the
distribution of virulence genes in HA and
CA. The p-value of the chi-square test for
the association between MRSA type and
the presence of these 16 virulence genes

is 0.01366, which is below the
conventional significance level of 0.05.
This indicates that there is significant

evidence to suggest an association
between MRSA type 

(HA or CA) and the presence of various
virulence genes.

There is only one
significant predictor

variable in model 3. The
odds ratio for pvl 
(Panton-Valentine

leukocidin) is 0.5394. This
indicates the odds of pvl

being detected in 
CA-MRSA are 53.94%

higher than in HA-MRSA. 

IDENTIFYING SIGNIFICANT FACTORS IN
HOSPITAL AND COMMUNITY-ACQUIRED MRSA
USING LOGISTIC REGRESSION MODELLING

 To investigate the association between type
of gene and infection type using chi-squared

test.

1.

To model the dataset for the identification of
significant factors in HA-MRSA and CA-MRSA

using logistic regression (LR) model.

2.

To evaluate the performance of the model
using testing dataset.

3.

INTRODUCTION

OBJECTIVES

METHODOLOGY

LR
MODEL

The dataset was partitioned into two subsets
90% for training and 10% for testing.
Analyzed data to identify key predictors of HA and CA-MRSA,
focusing on virulence genes, age, and infection source.

DATA SOURCE

VIF (Variance Inflation Factor) was used to detect
multicollinearity in our model, helping to identify which
predictor variables are correlated with each other.

BACKWARD
ELMINATION

METHOD

Improved the model by gradually removing the least
important predictors.

MODEL 
PERFORMANCE

EVALUATION

The performance of the model was evaluated using
accuracy and AUC (Area Under the ROC Curve).
Accuracy measures the proportion of correctly
classified instances, while AUC assesses the model's
ability to distinguish between classes.

RESULTS  AND  DISCUSSIONS
In Model 1, all predictors were included, yet none exhibited a
satisfactory p-value, indicating insignificance. Subsequently,

multicollinearity assessment using VIF revealed severe
multicollinearity with SCCmecIV, registering a coefficient of 11.74.
Thus, in Model 2, SCCmecIV was omitted. In Model 2, none of the

predictors are statistically significant, and the chi-square goodness-
of-fit test yields a very low p-value, indicating a poor model fit. No

multicollinearity was detected in Model 2. Consequently, the
backward elimination method was employed to improve the

model's accuracy and interpretability in model 3.

From the confusion
matrix, the model's

accuracy is calculated to
be 94.44%, indicating

that the model is highly
accurate.

The AUC for the ROC curve
shown is 0.875, which means that
Model 3 has an 87.5% probability

of correctly distinguishing
between HA-MRSA and CA-MRSA.

CONCLUSION
In conclusion, this study identifies pvl as a key significant factor in CA-MRSA, consistent
with existing scientific research. It provides robust statistical evidence supporting the
significant role of pvl using logistic regression model . This underscores the need for

targeted pvl-specific interventions to improve the prevention and management of
 CA-MRSA infections.

REFERENCES



Classification of Abelian Group and Related Problems
Pong Ching Hin

Universiti Malaya

Introduction
The fundamental theorem of finitely generated abelian group is fre-
quently used to classify and study the different structure of abelian
groups. It is a generalization of the fundamental theorem of finite
abelian group proven by Leopard Kronecker (1870) and who defined
a arbitrary set of elements with an operation satisfying certain laws
which now known as finite abelian groups.

F.G. Frobenius and L. Stickelbelger (1879) proved the fundamental
theorem of finite abelian groups with a group theoretical approach
and formulated the finite abelian group theory to modern mathemat-
ical views. Later, Poincare (1900) and Emmy Noether (1926) gave
a proof for the fundamental theorem of finitely generated abelian
groups which does not have the restriction on finite abelian groups.

We can use the theorem to generalize the structures of finitely gen-
erated modules over a principle ideal domain and use the theorem
for other applications such as study the structure of the groups and
finding isomorphic abelian groups of an given group.

Fundamental Theorem of Finitely Generated
Abelian Groups

There are two forms for the theorem namely:

Invariant Factors Decomposition Every finitely generated abelian
group G is isomorphic to a finite direct sum of cyclic groups
in which the finite cyclic groups are in the order
m1, m2, · · · , mt where m1 > 1 and m1|m2| · · · |mt.

G ∼= Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmt
⊕ F

where F is a free abelian group.

Elementary Divisors Decomposition Every finitely generated
abelian group is isomorphic to a finite direct sum of cyclic
groups, each of which is either infinite or of order a power of
a prime.

G ∼= Zp
n1
1

⊕ Zp
n2
2

⊕ · · · ⊕ Zp
nt
t

⊕ F

where F is a free abelian group, pi are primes and ni are
positive integers.

Remark on the Theorem

For a finite abelian group, the decomposition of the group does
not contains the free abelian group part.

If the group G is a free abelian group, then it is isomorphic to the
group F stated in the theorem.

List of Nonisomorphic Groups
Using the theorem, we can get all the possible combinations of non-
isomorphic abelian group of order n.
For invariant factors:

Find the prime factorization of n and list out all the possible mt.

For each mt, work out all the possible combination of
m1, m2, . . . , mt such that m1|m2| . . . |mt.

For elementary divisors:

Find the prime factorization of n and find the partition of each
power of the prime factors.

The direct sum of the pk where k is the partition of the power of p
is the nonisomorphic list for the prime factor. Last we just pair
each combination of a prime factor to other factors to obtain the
list of the abelian group of order n.

For a group of order n = pα1
1 pα2

2 · · · pαk

k , the number of nonisomorphic
abelian group is the product of the number of partition for each αi.

Maximum Order of Elements in an Abelian
Group

The maximum order of elements in an abelian group can be deter-
mine by using the theorem and some tricks. If we know the decom-
position of the group, we can find the maximum order of elements
from the group by finding the lowest common multiple of the order
of each cyclic group.

For example, the element in the group Z4 has element of order 4 but
the group Z2⊕Z2 only has element of maximum order 2 even though
both group are of order 4. This is a useful tools that we can use to
determine the isomorphism.

Isomorphism Between 2 Abelian Groups

We can show that two groups are isomorphic or not by using the
conditions above. As mention in the previous part, we can conclude
that Z4 � Z2 ⊕ Z2 because they exist an element of order 4 in one
group that cannot bemapped into the other group. Using this we can
also match up the pair of invariant factors and elementary divisors
from the list for order n.

Classification of Abelian Groups
Byusing the statement from beforewe can nowdetermine the iso-
morphic group of any given abelian group by the following steps:

Note that for a group Zpm⊕G is a subgroup ofZpn⊕G for all integer
0 ≤ m ≤ n and G is a group.

Other Applications

Finding the number of subgroups for a given finitely generated
abelian group.

Finding number of elements with certain order for a given finitely
generated abelian group.

Investigate and classify the structure of the factors group of a
finitely generated abelian group.
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Seksyen (East)PJU (North) SS (West) PJS (South)

Transportation

Build
Environment

Overlap Both

 1.5677 1.6267  1.5255  1.4990

 1.7015 1.7125 1.5968   1.4523

 1.7469 1.5530 1.64731.7545

METHODOLOGY

• To investigate and observe road networks of Petaling Jaya and
its accessibility through fractal dimensions.
• To investigate and observe how accessibility correlates to urban
development through fractal dimensions.

NUR DANIA BINTI NOR AZMI
Supervised by: Dr. Shahizat bin Amir and
Dr. Mohd Zahurin Mohamed Kamali

ANALYZING URBAN DEVELOPMENT AND ACCESSIBILITY
THROUGH FRACTAL DIMENSIONS OF ROAD NETWORKS
IN PETALING JAYA, SELANGOR, MALAYSIA

CONCLUSION

DISCUSSIONS

INTRODUCTION

OBJECTIVES
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PROBLEM STATEMENT
Petaling Jaya city has complex connections of its road networks
and growth patterns. Accessibility of a city is a crucial thing to its
development, thus the road networks contribute a major role to
determine the correlation. However, we need to use conventional
methods to observe and statistically analyze road networks, its
accessibility and the urban development

Urbanization, a hallmark of modern society, necessitates
sustainable planning as cities grow. In Petaling Jaya (PJ),
Malaysia, a city of over 600,000 residents spanning 97.2 square
kilometers, managing urban expansion and accessibility is
crucial. Traditional analysis methods, focusing on metrics like
road length and population density, often miss urban
complexity. This study proposes using fractal dimensions to
analyze Petaling Jaya's road networks, uncovering patterns and
structures of urbanization. Fractal analysis offers enhanced
connectivity insights and a visual understanding of urban form,
aiding better infrastructure development and planning for
improved accessibility and quality of life.

RESULTS

Data received from
Pusat Geospatial

Negara in shapefile

Each data being
convert into image

to be checked

Data being process
into a map and some
data are taken from

Open Steet Map

Data being cropped
and calculated by Box

Counting Method 

RStudio
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Box Counting Method
This method entails placing a grid of boxes with different
sizes over a fractal pattern and tallying the number of
boxes that intersect with the pattern. This procedure is
iterated with 2,3,4,6,8,12,16,32,64 boxes for this research,
and the correlation between the box count and their sizes is
leveraged to compute the fractal dimension

Petaling Jaya and Its Section Analysis
Petaling Jaya has an overall fractal dimension of 1.8204, indicating
high urbanization. All city sections have dimensions exceeding
1.5000, reflecting favorable urban conditions.
Sungei-Way Subang (SS) has the highest complexity that is 1.7545,  
dedicating SS as most urbanized section.
Petaling Jaya Utara (PJU) is the second highest of urbanization that
is 1.7469 which highly accessible and well-developed.
Seksyen has a moderate complexity with fractal dimension of 1.6473
and have increasing attractiveness and residential growth.
Petaling Jaya Selatan (PJS) has the lowest complexity of that is
1.5530 which likely to be less accessible and urbanize but has the
potential for future development.

Accessibility
Overall road network fractal dimension 1.7008 that is high in
complexity
PJS has the lowest road network dimension with 1.4990,
indicating less efficient infrastructure of road.
SS is the most accessible of all section, with highest
connectivity to other sections.

Built Environment
Overall fractal dimensions is 1.7871 with SS and PJU that are
most well-developed with numerous amenities.
Seksyen is close to optimal urbanization with 1.5968. 
PJS has lower complexity but steady population growth and
potential for future development.

Analyzing Petaling Jaya's road networks through fractal dimensions reveals
insights into accessibility and urbanization, identifying areas for potential
planning improvements. This study highlights the complexity of the PJ's road
structure and suggests integrating fractal dimensions into urban planning to
enhance mobility, land use, and infrastructure investments. These findings
support sustainable urban growth and improve quality of life for the future

N(1)=14 N(2)=34 N(3)=86



FORECASTING THE NUMBER
OF MRSA CASES IN MALAYSIA
USING TIME SERIES MODEL 

INTRODUCTIONINTRODUCTION METHODOLOGYMETHODOLOGY

OBJECTIVEOBJECTIVE

RESULT & DISCUSSIONRESULT & DISCUSSION CONCLUSIONCONCLUSION

Methicillin-resistant Staphylococcus aureus (MRSA)
infections are rapidly spreading in Malaysia, and a
particularly high number of cases are occurring.
Forecasting of MRSA growth is essential for
healthcare authorities to implement timely
preventive measures. 
This study focuses on predicting the future trend of
MRSA infections in Malaysia using time series
models, and it finds that the ARIMA model is the
most suitable one. Through detailed analysis, ARIMA
(1,2,1) was identified as the most effective model for
this purpose. 
The findings demonstrate that the ARIMA model can
reliably forecast future MRSA cases, providing
valuable insights for public health authorities to
enhance their strategic planning and response
efforts

Justify the selection of the ARIMA
model based on its fit to the data
compared to other models.
Train the ARIMA model using MRSA
case data from 2020 to 2022.
Forecast future MRSA cases in Malaysia
using the trained ARIMA model.
Highlight key insights gained from the
forecast.

Data Limitations:
Short Data Length: 

With only 26 data points, capturing long-
term patterns and trends becomes
challenging, which may impact the model's
ability to make accurate predictions.

Potential Seasonal Patterns: 
The short length of the dataset may
obscure potential seasonal patterns that
could be better understood with a longer
dataset.

Model Performance:
Accuracy Metrics: 

The low ME and MASE values suggest the
model performs reasonably well regarding
scaled error. Yet, the large deviations in
forecast values indicate that further
improvements are necessary.

Future Improvements:
Data Enhancement: 

Increasing the dataset length by including
more months or incorporating relevant
external data (e.g., hospital policies and
seasonal trends) can improve model
accuracy. 

Model Complexity: 
Exploring more sophisticated models such
as SARIMA, Prophet, or neural networks
could potentially yield better forecasting
results, especially if there are underlying
complex patterns not captured by simpler
models. 

Split the data into training and testing sets.
Transform the data to reduce variance and differentiate it to
achieve stationarity.
Verify stationarity using the Augmented Dickey-Fuller (ADF) test.
Ensure the p-value from the ADF test is less than 0.05. If the p-
value is greater than 0.05, apply additional differencing to the
data.

Analyze ACF and PACF plots to identify potential models
based on data patterns.
Use ACF and PACF to assess the suitability of AR (p) and MA
(q) models and identify possible candidate models.

Determine the parameters for potential models and select the
most appropriate ones.
Choose the best model based on the lowest AIC or BIC value.
Verify that the residuals' ACF and PACF indicate white noise.
Use the p-value from the Ljung-Box test or a normal probability
plot to check if the residuals are normally distributed.

Use the selected model to forecast the time series.
Verify forecasting accuracy by comparing forecasted values
with actual values.
After validating the model, refit it using the entire dataset.

It is observed that the number of MRSA cases in
Malaysia from October 2021 to March are within the
80% and 95% confidence interval, which shows that
the forecasting values are acceptable. TheME and

MSE of the forecast values are -1.00 and 0.62,
respectively, which arerelatively low. In general,

the forecastresults are acceptable.

We applied first-order differencing as the initial data was non-
stationary, yet the data remained non-stationary. Consequently,
we proceeded with second-order differencing. Upon reviewing
the ACF and PACF plots for the second-order differencing, we
observed no decay, indicating stationarity. Notably, the partial

autocorrelation function displayed significant spikes at lags 1 and
2, suggesting a potential AR model order of 1 or 2. In contrast, the

autocorrelation function exhibited a significant spike at lag 1,
implying a possible MA model order of 1.

Utilizing historical MRSA case data collected by the National
Institute of Health from February 2020 to March 2020, a time
series plot was generated, comprising 26 observations. The
training set includes monthly cases from February 2020 to
October 2021, while the testing set spans from November

2019 to March 2022. The plot illustrates that MRSA infections
in Malaysia exhibited a non-stationary trend and

demonstrated an upward trajectory over the years.

These are the following 5 models that have been
estimated from the ACF and PACF plots. Based on
the table, it is observed that ARIMA (1, 2, 1) shows

the minimum values of these measures.

Supervisor: dr anisah binti mohamed @ rahman
dr norli anida binti abdullah
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1. Abstract and Objectives
In an attempt to obtain exact solutions to Ein-
stein’s field equations, we derive the most general
metric and affine connection that respect various
spacetime symmetries. Furthermore, we consider
the case of symmetric teleparallel geometries by
imposing vanishing torsion and curvature. Lastly,
we obtained the general modified Friedmann
equations for various f(Q) gravity theories with the
FLRW metric and a perfect fluid universe.

Objectives
• To determine the most general metric and

connections of spacetimes with certain sym-
metries.

• To determine a special case where the torsion
and non-metricity tensor vanishes (known as
symmetric teleparallel geometries)

• To obtain the modified Friedmann equations
in symmetric teleparallel FLRW universes us-
ing the f(Q) field equations.

2. Background
Einstein’s General Relativity (GR), published in
1915, is the current best description of gravity. How-
ever, GR is not the full story of gravity.

Notable issues include:
• What causes the expansion of the universe?
• Does dark matter and dark energy exist?

Potential modifications of GR include:
• f(Q) gravity
• Loop quantum gravity and string theory
• Conformal field theories

3. Tensor Calculus
The metric tensor gµν are the components of the
distance formula:

ds2 = gµνdxµdxν .

An affine connection Γλ
µν satisfies the transforma-

tion rule:

Γλ
µν = ∂xλ

∂x̄k

(
∂2x̄k

∂xν∂xµ
+ Γ̄k

ij
∂x̄i

∂xµ

∂x̄j

∂xν

)
.

The torsion, non-metricity and Riemann curvature
tensor are defined respectively as follows:

T λ
µν = Γλ

µν − Γλ
νµ

Qµνρ = ∂µgνρ − Γλ
µνgλρ − Γλ

µρgνλ

Rλ
µαν = ∂αΓλ

µν − ∂νΓλ
µα + Γλ

σαΓσ
µν − Γλ

σνΓσ
µα.

4. Symmetric Teleparallel Geometries
Symmetric Teleparallel Geometries refer to the class of spacetimes with zero torsion and curvature,
which can be found by setting T λ

µν = Rλ
µαν = 0.

To determine the most general metric and connection under a given set of symmetries, we
set the Lie derivative of the metric and connection to be 0 for each Killing vectors X associated
with the spacetime symmetries: 0 = (LXg)µν = (LXΓ)λ

µν .

For a spacetime with spherical symmetry, the most general symmetric teleparallel metric is:

gµν =


gtt gtr 0 0
grt grr 0 0
0 0 gθθ 0
0 0 0 gθθ sin2 θ


while the most general symmetric teleparallel connection is in terms of 12 functions of t and r:

Γt
µν =

C1 C2 0 0
C2 C3 0 0
0 0 C7 0
0 0 0 C7 sin2 θ

 Γθ
µν =

 0 0 C9 −C11 sin θ
0 0 C10 −C12 sin θ

C9 C10 0 0
−C11 sin θ −C12 sin θ 0 − sin θ cos θ



Γr
µν =

C4 C5 0 0
C5 C6 0 0
0 0 C8 0
0 0 0 C8 sin2 θ

 Γϕ
µν =

 0 0 C11 csc θ C9
0 0 C12 csc θ C10

C11 csc θ C12 csc θ 0 cot θ
C9 C10 cot θ 0

.

For spacetimes with spherical and translational symmetry, we obtained the FLRW metric for scale
factor A(t) and lapse function N(t):

ds2 = −N2(t) dt2 + A2(t)
1 − kr2 dr2 + A2(t) r2 dθ2 + A2(t) r2 sin2 θ dϕ2.

For spacetimes with spherical, translational and time symmetry, we obtained the since disproven
Einstein’s static universe metric.

ds2 = g1dt2 + g2

(
dr

1 − kr2 + r2dθ2 + r2 sin2 θdϕ2
)

.

5. Applications to Cosmology
f(Q) gravity is a modified theory of gravity using the non-metricity scalar Q and an aribtrary function
f(Q), while requiring vanishing torsion and curvature.

Assume a perfect fluid universe with mass density ρ and pressure p with the FLRW metric,

• f(Q) field equations (with 8πG = 1 and c = 1):

df

dQ
Gµν + 1

2gµν

(
Q

df

dQ
− f

)
+ 2 d2f

dQ2 (∇αQ)P α
µν = Tµν .

• Non-metricity scalar Q

Q = QαµνP αµν = −6H2 + 9HK3 + 3K1K3 − 3K2
3 + 3HK2

A2 − 3K1K2

A2 − 3K2K3

A2

where K1, K2, K3 are functions of time, H = Ȧ(t)
A(t) is the Hubble parameter and P α

µν is the
non-metricity conjugate tensor.

• There are 4 possible cases, depending on the value of k. One such case is k = 0:

Q = −6H2

ρ = 3H2 df

dQ
− Q

2
df

dQ
+ 1

2f

p = −3H2 df

dQ
− 2H

d2f

dQ2
dQ
dt

+ Q
2

df

dQ
− 1

2f − 2 df

dQ
dH

dt
.

6. Conclusions
As a conclusion, we explored the history of
Einstein’s theory of General Relativity and its
modifications.

To find solutions to Einstein’s field equations,
we determined the most general symmetric
teleparallel metric and connection satisfying
some desired symmetries, deriving the FLRW
metric as a consequence.

Lastly, using the f(Q) field equations, we
obtained some modified Friedmann equations
in the case of symmetric teleparallel FLRW
universes.
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INTRODUCTION
Spatial analysis has been used to study, understand and derive the insights from the spatial data either
geometrically or geographically.One of the crucial uses of spatial analysis is to predict the housing prices in a
region. In earlier times, the method for analysing the data through a perceived spatial lens is by modelling
the data onto the ordinary least squares (OLS) regression. As years went by, spatial models such as the
Manski model and the low rank spatial lag model were developed. This study aims to conduct a spatial
analysis on housing prices with two different case studies, which are the suburbs of Perth and the towns of
Boston. This study also aims to compare the two case studies to determine the existence of spatial
autocorrelation in the housing prices and spatial features which could be the factors that affect the housing
prices in Perth and Boston.

DATA DESCRIPTION

METHODOLOGY

APPLICATION OF DATA TO CASE STUDIES

CONCLUSION
The Boston house price data, which is used as benchmark data in this work, is a classic spatial data set and is
comprehensive. Hence, suitable spatial models can be employed to proceed with spatial predictive modelling.
However, the Perth house price data needs to be addressed further by implementing more spatial variables to
proceed with spatial modelling. Future studies involving more variables that project strong spatial autocorrelation
can be investigated to improve the existing spatial predictive model accuracy. It is also of interest to study the
effects of various spatial weight matrices to quantify the spatial relationships that exist among the features in the
dataset of interest.
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ABSTRACT
The spatial variability of housing market determinants leads to differences in
market activity and in real estate prices and values across different areas. This
study analyses housing prices through spatial analysis in two different case
studies: the suburbs of Perth and the towns of Boston, aiming to determine the
existence of spatial autocorrelation. The Perth dataset is analysed using both
non-spatial and spatial models, specifically the ordinary least squares (OLS)
regression and the Manski model, respectively. The low rank spatial lag model
(LSLM) with the selected spatial variables from the dataset was fitted to the
Boston dataset.. The results from the first case study, Perth, showed a weak
spatial autocorrelation and the data was proven to be a poor fit for the Manski
model. However, the second case study, Boston house price data, showed a
moderately strong spatial autocorrelation, and the low rank spatial lag model
proved to be a good fit for the data. Several spatial variables were identified to
have a direct impact on housing prices in the region.

Moran’s I Statistic

Ordinary Least Squares (OLS) Regression

The Manski Model

The Low Rank Spatial Lag Model

1) PERTH OLS REGRESSION
MAP OF PERTH

2) BOSTON
LOW RANK SPATIAL LAG MODEL

MAP OF BOSTON

Perth
Housing price dataset obtained from 2021
Consists of 19 columns

Boston
Housing price dataset obtained from the 1978 census
Well known dataset for conducting spatial analysis
Consists of 14 columns

}
Spatial Models

To calculate the impact of
the spatial variables onto
the dependent variable
Provides the direct,
indirect and total impact
onto the dependent
variable

Workflow of the study

LAND AREA shows a negligible negative impact
CBD DIST & NEAREST STN DIST shows a small negative
impact
NEAREST SCH DIST shows a significant positive impact
Adjusted R-squared value is 0.241

CBD_DIST, NEAREST_STN_DIST & LAND_AREA show a
negative and low effect on the price per square meter
NEAREST_SCH_DIST shows a significant positive effect
on the price per square meter
The Manski model proves to be a poor fit for the data

The crime rate (CRIM) and proportion of
owner-occupied buildings prior to 1940
(AGE) significant negative effect towards the
median value prices
The Charles River dummy variable (CHAS)
and the rooms per property (RM) show a
significant positive effect towards the
median value prices
The nitrous oxide concentrations (NOX) and
the proportion of non-retail business acres
(INDUS) show a lack of effect on the median
value prices

 

THE MANSKI MODEL

The spatial weights matrices generated for these models are the Queen
contiguity weights which are a combination of Rook contiguity (only common
vertices) and Bishop contiguity (only comon vertices).

Estimated based on covariance
Index values ranges from -1 to 1
Values above 0 give a positive spatial autocorrelation
Values below 0 give a negative spatial autocorrelation

Provides the impact of the spatial variables to the
dependent variable
Calculates adjusted R-squared value which gives the
percentage of variability in the data due to the selected
spatial variables 



Mathematical Computation

L L L1 2 3

D =                                     (2) log N(L)
log 1/L
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Fractal dimension was coined by Benoit B.
Mandelbrot in 1975.
The dimension is not integer, but rather a fraction
unlike Euclidean dimensions.
Fractals are geometry figures & their
characteristics:

Self similar
Recursive

A fractal dimension is a ratio providing a statistical
index of complexity.

where:
 D represents the fractal dimension.
 N(L) is the number of grid boxes of side length L needed to
cover the network.
 L is the grid boxes with side length L.

N(L) ∝ L             (1)-D

Problem Statement:
The Klang River network in the Klang Valley region
lacks a comprehensive assessment of its fractal
properties. Understanding its fractal dimension is
crucial for insights into its structure, evolution, and
behaviour. This study aims to evaluate the strengths
and limitations of using the box-counting method
integrated with GIS to estimate the fractal dimension,
providing valuable insights for environmental
management, flood control, and urban planning.

Objectives:
Understanding the fractal complexity in
Klang River network in Klang Valley area
using spatial analysis and mathematical
computation.
Investigate the applicability of
Geographic Information System (GIS)
with the box counting method for
estimating the fractal dimension of Klang
River network.

Klang River and its network
system in Klang Valley region
consist of Klang, Petaling, Ulu
Langat,  Gombak District and
Wilayah Persekutuan Kuala
Lumpur

N(L1) = 8, 
N(L2) = 11, 
N(L3) = 101

This power law corresponds to a linear relationship of Equation 1 on
a logarithmic scale. A log-log plot of N(L) against 1/L is constructed
with the plotted  points, and the slope of the resulting line gives an

estimate of the fractal dimension, D by fitting these points with
linear regression using Equation 2.

Interpretation of Results:
The table lists grid sizes and corresponding box counts, showing an inverse
relationship.
The log-log plot of box size and box count indicates a power-law distribution,
characteristic of fractals.
The fractal dimension of 1.6114 suggests a complex river network, impacting
hydrological processes like water flow and flood dynamics.

Box Counting Method Using GIS:
QGIS automates the box-counting process, ensuring accuracy and efficiency.
This method helps manage large datasets and provides insights into river network
complexity.

Urban River Network and Impact of Urbanization:
Urbanization can simplify river networks, reducing their capacity to manage heavy
rainfall, as observed in the Taihu Region, China.
Understanding the Klang Valley river network's fractal properties is vital for effective
water management and flood mitigation, particularly after the severe December
2021 floods.
Sustainable urban planning should balance development with ecological
preservation, using advanced technologies and community engagement.

The box-counting method effectively measures the complexity of the Klang River network, revealing
a fractal dimension of 1.6114. This high degree of branching and connectivity is crucial for hydrological
and ecological processes. Limited data accessibility highlights the need for more comprehensive
studies and institutional support. The project also demonstrates the utility of GIS in enhancing the
box-counting method, facilitating efficient and accurate spatial analysis. Further studies on
Malaysian river systems are recommended to understand the impacts of urbanization. Policymakers
should use GIS technologies for better river conservation, flood management, and urban planning.

Data: Scholar:
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