NEURAL NETUORK
STRUCTURES: LOGISTIC
THINKING AND
PATTERNIST THINKINE

APPROACH

Why bother with
Neural Networks?

NN tasks:
» Matrix Multiplication

e Gradient Decent Parallel Computing

l

« Faster training time

Better Accuracy, more

reliable program » Faster calculation time

_:; ﬁ Neural Networks are able to

5 E| » crunch down huge amounts of
! Input and detect patterns

within with very high success.

A concerning problem is that
Neural Networks is so easy to
: trick, which begs the question.
l Where is the fine line between
functioning and malfunctioning
for it

PERCEPTION PROBLEMS

Adding carefully crafted noise to a picture can create a new image that
people would see as identical, but which a DNN sees as utterly different.

Panda
|

In this way, any starting image can be tweaked so a DNN
misclassifies it as any target image a researcher chooses.
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hidden state / output
L

-
a

hidden
state

L

I

Xs

currant input



Zhang Shuo

( Forecasting Volatility using financial models )

17203839
Supervisor: Associate Prof Dr. Ng Kok Haur

01 Abstract

In the financial markets, the volatility is always associated with monetary policies, exchange rate and global events. As a result, the volatility in
financial market is often unpredictable and fluctuant. Nowadays, there are many range-based volatility measures and return-based volatility
measures widely used in the world. we propose Parkinson (PK) and Open-to-close (C0) measures to estimate the volatility of the Standard and Poor's
500 (S&P500) between 2011 and 2015 and use Conditional autoregressive (CARR) model to fit the volatilities and obtain the in-sample forecasts and
out-of-sample forecasts. Also, different error distributions are used in this paper to illustrate the differences of Akaike Information Criterion, MS£and
MADbetween different volatilities and choose the best in-sample forecast and out-of-sample forecast based on these criterions. The results illustrate

\  that the PK measure is a better measure in fitting the volatility and generalized gamma distribution is a better choice as error distribution.

02 Problem statement

The trend of stocks is hard to measure and predict because it is
always associated with many factors, such as political and economic
factors, industry and sector factors and company performance etc. As
a result, there are many different types of volatility models that have
been invented by researchers to better forecast the stock price as it
is a valuable and reliable model to predict the trend.

q’ CARR model
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the CARR model with the generalized gamma distribution of error term
generates the lowest AIC value with 7961.437 and 8444.606 for the in-
sample forecasts of the CO and PK values respectively. according to MSE
and MAD, we find that the generalized gamma distribution in the setting of
CARR model obtains the best in-sample forecasting performance as well.

06 Conclusion

PK measure is a moré accurate and efficient measure when we want to :
estimate the volatility, for out-of-sample forecasts, PK measure is

104 Methodology

Open-to-Close measure

103 Objectives

1. To use CARR model measure to fit different volatility measure (CO) measure
and (PK) and analyse the result by comparing the Akaike Information Criterion.
2. To generate the in-sample models and out-of-sample forecasts by using
the CARR model with different volatility measures.

3. To obtain the different in-sample models and out-of-sample forecasts by
using three different error distributions for one particular volatility measure..

Parkinson measure

ﬁ 2 (Ht B Lt)z
[ O pkt =

7 @ L cho,t = (G — Ot)z 4In2
C, is the logarithmic closing price on date ¢, H, is the logarithmic highest price on date ¢
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05 Result and Discussion
ﬁc 8584.430 | 7963.730 | 7961.437 | 8619.234 | 8857.800 | §444.606
MSE | 13602.95 | 13483.04 | 13482.19 | 8911.428 | 8887.981 | 8693.496
MAD | 5532747 | 55.66942 | 55.52548 | 39.32484 | 39.86525 | 39.00179
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doing better in forecasting, because the MAD is smaller compared with

MAD of CO measure. This situation also happens in in-sample model, : = =

and it is obvious that the MSE and MAD of PK measure are both smaller § |oss Expon Wei Gener Expon Wei Gener
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e generalized gamma distribution is a better choice as of the error "

distribution, for in-sample models the CO measure fitted by CARR : tion gamm Gam

model with generalized gamma distribution has the smallest AIC, MSE a ma

and MAD, and the PK measure fitted by CARR model with generalized ! MISE 4489. 443 4495. 6281. 629 6087.

gamma distribution has the smallest AIC, MSE and MAD as wellfor out- : - Hea

of-sample forecasts, the CO measure fitted by CARR model with 355 ) o 451 1'08 4

generalized gamma distribution has the smallest MAD and the PK :

measure fitted by CARR model with generalized gamma distribution ! MA 45.13 448 4486 3830 384 3581

has the smallest MSE and MAD D 196 762 203 963 663 122
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Table demonstrated the MSE and MAD values of the out-of-sample forecasts. For
the CO index, we find the CARR model with Weibull distribution generates the besf
: performance under the MSE measure with 4434.53, while it is the generalized
gamma distribution that generates the lowest MAD value with 44.86203. For the

: PKiindex, the generalized gamma distribution outperforms the others under both
i the MSE and MAD criteria with 6087.369 and 35.81122 respectively.



ACCELERATED NUMERICAL
METHOD FOR SOLVING BRAIN
TUMOR MODEL
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INTRODUCTION THE HEAT EQUATION

This mathematical project i to Professor J.D. Murray was the first one to investigate the challenge of

compare the Gauss-Seidel and monitoring the growth of an invading glioma in the early 1990s. He
Successive Over Relaxation method to
see which method is more effective to
study the dynamic of brain tumor

came up with a conservation equation to solve the problem. He came

up with an equation:

D = diffusion coefficient

i 2
. (D % C) + P c p = proliferation rate.

OBJECTIVES RESULTS

We will discretise the heat equation using the BTCS scheme and form a linear
1.To discretise the brain tumor system. Then, solve the linear system using Gauss-Seidel and Successive Over
Relaxation method by using the Matlab software since the mesh size is bigger.

growth model's function using
Calculate the results for 5,10,15 days. The results for 5 days is shown below:

backward time centered space

(BTCS) and form a linear system Table 4. 1 Numerical results for s = 5 days

. N Methods k Time £
2.To determine the growth of the : GS 2712 112.25 4g§ﬁ
—_— . ; . 30x30 TSGS 1623 16.28 4355
infiltrating brain tumor by using | SOR(w = 1.94) 996 936 4364
: : GS 10045 126.16 4413
the Successive Over Relaxation A TSGS 5640 25.08 4412
(SOR) method in solving the SOR(w = 1.94) 3833 16.88 4413
GS 36714 203.32 4439
generated system of the linear 120x120 TSGS 19047 53.38 4424
SOR(w = 1.94) 13498 24.3 4439
equations from the heat equation GSs 132766 1975.5 4443
240x240  TSGS 62038 194.33 4420
3.To investigate the performances SOR(w = 1.94) 48226 100.71 4443

of the Successive Over Relaxation
DISCUSSION

(SOR) method with the Gauss- ) . . ) . )
The number of iterations and the computational time by the SOR iterative

Seidel (GS) method in solving the method dropped drastically compared to the GS and TSGS iterative
generated linear system. methods. Note that the fewer the number of iterations and the smaller the
computational time, the better the performances are. Therefore, as shown
from all the figures above, the computational results reveal that the SOR

iterative method is more convenient than the GS and TSGS iterative

METHODOLOGY METIUES
* Backward Time Centered Space CONCLUSION

e Gauss-Seidel The BTCS discretisation method was successfully developed and used in the

¢ Successive Over Relaxation heat diffusion equation. The growth of the infiltrating brain tumor was
determined by using the Successive Over Relaxation (SOR) method in solving
the generated system of the linear equations from the heat equation We also
include a comparison of GS, TSGS, and SOR, suggesting that the SOR system is
more effective than the GS and TSGS method.
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INTRODUCTION

Understanding the effects of this heterogeneity is important,
particularly as it can modulate response to drug application.
In this work, we conduct a computational study on
populations of rabbit cardiomyocytes in order to investigate
the effects of variability in cellular electrophysiology to drug
blocking of the rapid and slow component of the delayed
rectifier potassium current.

This is the cross section of
an isolated ventricular cell
and ions can passes through
the protein channels and
creates ionic current in and
ingide ool . | out of the cell. The voltage
) s Y Y W across the membrane is the
v (o) &) action potential (AP) of the
cell.

i

1

METHODOLOGY (CONT.)

Simulate control cases for each

parameter set by putting them
in the model

Use Latin Hypercube Sampling
to generate parameters that
scale from 0.1 to 2

Do drug simulation model with
IKr channel blocked at 95% and
find the partial correlation
coefficient of conductance and
biomarkers

Remove illogical AP and fit the
population based on
experimental data

MOTIVATION & PROBLEM STATEMENT

Conducting the experiment protocol to investigate the
effect of cardiac drug on different ventricular cell is very
expensive and difficult to be done in large scale. Hence
using an existing mathematical model to replicate the real
life experiment is important so that we can push on the
research on the effect of cardiac drugs due to
electrophysiological variability.

OBJECTIVES

1.To investigate the underlying mechanism of
electrophysiological variability.

2.To quantify the correlation between the ionic current and
action potential's biomarkers,

3.To study the effects of electrophysiological variability on
the response to cardiac drugs in ventricular cells.

cardiac

SCOPE OF STUDY

- limit the study within individual isolated ventricular cells
- limit the variability between cell to cell is the density of ionic
protein channels

We will use the model
developed by Mahajan et
al. (2008) to do drug

simulation on ventricular
cell.

Selected Reference:

RESULT AND DISCUSSION

Example showing the effect of drug on AP

e || For normal responses, the
) action potential is prolonged

because the IKr channel is

blocked, the repolarization

phase becomes slower.

—— AP with Dnug

Among the model populations,
16 out of 294 models exhibit
hyper response towards the
drug, which is about 5.44% of
the total proportion. For the
normal response, the median of
delta is about 21.91ms, this
verifies the observation above.
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Median of Delta: 21.905174
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Correlation of Delta against lonic Conductance

Out of all ionic conductance,
gKr has the highest correlation
with delta, this is because we
have use the 95% |Kr channel
blocker.

K gt ghaf .

Mok ghals

CONCLUSION

We have understood the variability of electrophysiological
behaviour is due to the different in protein channel that affect
the ionic current from cell to cell, found out the correlation
between the ionic current and AP biomarkers, where we verify
each of the ionic current’s role in the AP, and discovered the
potential side effect where 5.44% of the population exhibits
hyper response towards the drug, and among the normal
responses, the median of &6 is 21.91ms.

The use of mathematical modelling and numerical simulation
can ease the prediction of effect of some drugs and at the
same time cut the cost for the research work because we do
not have to carry out large scale experimental protocols.

Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher, D. J. and Rodriguez, B., 2013. ‘Experimentally
calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology’,
Proceedings of the National Academy of Sciences 110(23), E2098-E2105.



EXTENDED SEIR MODEL TO AID DEVELOPMENT OFf COVID-19

CONTROL STRATEGIES IN KLANG VALLEY

BY SAFA MALIK

To determine the impact of control strategies,
such as screening and isolation, in curbing the
spread of the virus.

COVID-19
¢ Infectious disease caused by newly discovered coronavirus.
e First reported in Wuhan, China in December 2019.
¢ Symptoms include fever, cough and shortness of breath
¢ Infected over 492 million individuals and caused 6 million
deaths.

To observe the effect of vaccination.

To perform mathematical analysis of the
model.

Vs
Susceptible Exposed Recovered
. )

The reproduction number or the R_0 value represents the number of new infections produced by a single infectious
individual in a completely susceptible population.

Compartmental Models

e Mathematical models define real world situations in
mathematical form such equations.

¢ SEIR models are commonly used

¢ Can forecast the progression of infectious diseases

¢ The SEIR model is a common compartmental model

e R_0 >1: Each infection causes multiple new infections leading to an exponential increase
e R_0 <I: Each existing infection causes less than one new infection

Using next-generation matrix method, we get the following for our compartmental model:

Beyv = test = (k — 1)(q — 1)(p + o(1 — p)) *scr?
(scr+ a * se)(e* scrx test + &y * scr* se + gy * se * test — E/\*scr*test+y/\*scr*test—a‘y*pasy*scr*se)

R_0=

The following epidemic equilibrium points are found by setting the derivatives to 0:

E; 0,0,0,0,0, =y =D We construct the Jacobian matrix and find the eigenvalues at each point
Lh Boyve(e=1) ’

For both equilibrium points we get 4;, 4, A3, A4, 45 %6, A7, Ag, 29< 0 and A;y, A, = 0.

,0,0,0,0,0) when 6>y

E; =(0,0,0,0,0,0,0,0,0,0,0) The points are stable but not asymptotically stable

¢ We examine the effect of changing parameter values.

¢ Altering more sensitive parameters will lead to large changes.

¢ We can understand the association between compartments and variables.

o This is also a way of testing the model as we may uncover unexpected relationships.

18

— ) : - - Effect of changing vaccination rate on the active cases:

: - When the vaccination rate is 0.00035 day”(-1), the peak number
of active cases is approximately 14.5x1074 cases.

- When the vaccination rate is 0.01 day”(-1), the peak number of
cases reduces to 11x1074 cases.

As vaccination rate increases, more individuals move from the
susceptible to vaccinated compartment. Since the transmission rate
is lower, they are protected from being infected which reduces the
oy = = = number of active cases and herd immunity is achieved quicker.

Time (days)

S - Unvaccinated population who has not been infected

V - Vaccinated population who has not been infected

E - Exposed population who has not been traced

Et — Close contact traced population who will test positive.

I - Population capable of transmitting the disease

P - Population that has been tested positive

R - People that have recovered

D - Population that died as a result of contracting the disease.
T_1- Traced close contacts from susceptible population that
have tested negative.

T_2 - Traced close contacts from vaccinated population that
have tested negative.

T_3 - Traced close contacts from recovered population that
have tested negative
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Differential Equations

Assumptions

Parameter
B Probability that susceptible becomes infectious per
contact
v Average number of contacts per day per case
q Proportion of close contacts traced per day
K Proportion of exposed persons who performed
effective precautions
P Vaccination rate (rate of people who are vaccinated)
com Daily per capita (per person) community infection
a Vaccine inefficacy
1 Rate of progression from exposed to infectious (« is
a latent period)
scr Screening interval (days)
1 Recovery rate of infectious individuals ( 1/ infectious
]_r period)
[ Duration of isolation or quarantine (days)
se PCR sensitivity
test Time from onset of infectiousness to testing (days)
1—Pasy Proportion symptomatic
T Rate of second infection
A Mortality rate
& Average days until death

e The entire population of Klang Valley is divided into 11 compartments.

¢ Natural births and deaths have minimal impact on progression of the disease, so they

e Screening involves testing the entire population at fixed intervals irrespective of

¢ Individuals infected by the disease and traced will move to move to exposed traced

¢ Those who are not traced will move to the Exposed (E) compartment.
e The susceptible and vaccinated individuals that have been traced and tested

¢ The recovered population can be exposed to the disease again with a lower
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dt N Hishis negative will move to T_1and T_2 respectively.
dT; _ (1-f)qRl 1

dt N 5
dEt Bug(1 —)SI  aPuqg(1 —i)VI  thug(1—K)RI 1 - transmission rate.
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del N N N test

Data such as active cases, vaccination rates and cumulative deaths was collected from Klang Valley which consists of
Selangor, Kuala Lumpur and Putrajaya, for the months June to August, 2021. We wish to fit the model to the real data.

Optimisation is performed using Nelder-Mead algorithm.
We estimated the parameters 3 and A.

The built-in function 'fminsearch’ is used to find the minimum of the error function.
Error terms were calculated for active cases and cumulative deaths, using residual sum of squares.

ive Death 10°
000 ‘The Cumulative Deat! 14 210

People in isolation

actual data
model

Number of Death

O acualdata
dol

¢ The transmission rate increases in July 2021,
which may be due to the low vaccination
rate and lack of adherence to the movement
control order.

¢ Since the cases increased, the enhanced
movement control order was introduced in

areas of Klang Valley.

0 10 20 30 40 5 60 70 8 9% 100 0 2 80 100
e ) Tme @0 : : -
¢ This along with more people receiving
0.0125 1<t<30 0 1=<t<30 .l
== ’ nation may have r h
A=100113 ,30<t<60 f=100446 ,30<t<60 U UG e Tl
0.0133 60 <t <092 0.0399 ,60<t<92 transmission rate for August 2021.

COVID-19 has had a significant impact worldwide.
We constructed an extended SEIR model to monitor the

progression of the disease, predict the likely conclusion
and assist in developing public health measures.

Data was collected from Klang Valley to estimate the

transmission and mortality rates.

In order to prevent such high active cases and deaths,

more screening and higher vaccination rates required.
Parameter sensitivity analysis showed that these had an
impact on the active cases and cumulative deaths.

Policymakers need to consider appropriate screening
intervals and vaccination rates by estimating the costs etc.

As shown during the mathematical analysis, the RO value is
dependent on several parameters such as proportion of
close contacts traced. The aim is for the RO to be less
than 1, so measures such as efficient contact tracing will
help minimise the impact of the virus.




